Optimization of Linear Multivariable Systems with Structured Perturbations and Prescribed Closed-Loop Eigenvalues

M.S. Ibbini and W.F. Swedan

References

  1. [1] M. Ibbini & S. Alawneh, A state feedback controller withimproved performance, IEE Proc. Control Theory and Applications, 145 (1), 1998, 33–41. doi:10.1049/ip-cta:19981545
  2. [2] M. Ibbini & M. Amin, A state feedback controller with minimumcontrol effort, C-TAT, 9 (3), 1993, 475–484.
  3. [3] M. Ibbini & Z. Ramadan, A reduced sensitivity state feedbackcontroller, Journal A, 3 (4), 1994, 21–27.
  4. [4] M. Gopal & P.P. Nair, Sensitivity reduced optimal linearregulator with prescribed closed loop eigenvalues, IEEE Trans.on Automatic Control, 29 (7), 1984, 634–642. doi:10.1109/TAC.1984.1103607
  5. [5] E. Soroka & V. Shaked, On the robustness of LQR, IEEETrans. on Automatic Control, 29 (7), 1984, 664–665. doi:10.1109/TAC.1984.1103612
  6. [6] M. Ibbini & M. Al-Zoubi, Optimal LQ regulator with reducedsensitivity and prescribed eigenvalues, ICECS ’94 Proc., 2,1994, 610–614.
  7. [7] N. Lelatomaki, N. Sandell, Jr., & M. Athans, Robustnessresults in linear quadratic Gaussian based multivariable controldesign, IEEE Trans. on Automatic Control, 26 (1) , 1981,75–93. doi:10.1109/TAC.1981.1102565
  8. [8] M. Amin & M. Ibbini, New explicit parameterized statefeedback controller, C-TAT, 8 (3), 1992, 659–679.
  9. [9] M. Ibbini & M. Al-Zoubi, Optimal LQ regulators with H infinityperformance bound and prescribed eigenvalues, C-TAT, 10 (4),1996, 412–427.
  10. [10] T. Fujinaka & S. Omatu, Pole placement using optimal regulators, Journal of the IEE Japan, 121 (1), 2001, 240–245.
  11. [11] J. Whidborne, R. Istepanian, & J. Wu, Reduction of controllerfragility by pole sensitivity minimization, IEEE Trans. onAutomatic Control, 46 (2), 2001, 320-325. doi:10.1109/9.905702

Important Links:

Go Back