Adaptive Zero-Phase Error-Tracking Controllers with Advance Learning

M.M. Mustafa, N.R. Yaacob, and N.A. Nik Mohamed

References

  1. [1] M. Tomizuka, On the design of digital tracking controllers,AMSE Journal of Dynamics Systems, Measurement and Control, 115, 1993, 412–418.
  2. [2] D.Torfs, J. Swevers, & J. De Schutter, Optimal feedforwardprefilter with frequency domain specification for non-minimumphase systems, ASME Manufacturing Science and Engineering,68 (2), 1994, 799–808.
  3. [3] K.S. Walgama & J. Sternby, A feedforward controller design forperiodic signals in non-minimum phase processes, InternationalJournal of Control, 61 (3), 1995, 695–718. doi:10.1080/00207179508921924
  4. [4] Y. Gu & M. Tomizuka, Multi-rate feedforward tracking controlfor plants with non-minimum phase discrete time models,Trans. of ASME, 123, September 2001, 556–560. doi:10.1115/1.1370512
  5. [5] H.S. Park, P.H. Chang, & D.Y. Lee, Concurrent design ofcontinuous zero phase error tracking controller and sinusoidaltrajectory for improved tracking control, Journal of DynamicSystems, Measurement, and Control, 123, March 2001, 127–129. doi:10.1115/1.1343464
  6. [6] S.S. Yeh & P.L. Hsu, An optimal and adaptive design of feedforward motion controller, IEEE/ASME Trans. on Mechatronics, 4 (4), 1999, 428–439. doi:10.1109/3516.809521
  7. [7] E. Gross, M. Tomizuka, & W. Messner, Cancellation of discretetime non-minimum phase zeros by feedforward control, Proc.ASME Winter Annual Meeting, Anaheim, CA, 1992, 1–7.
  8. [8] G.C.Goodwin & K.S. Sin, Adaptive filtering, prediction andcontrol (Englewood Cliffs, NJ: Prentice-Hall, 1984).
  9. [9] R. Johansson, System modelling and identification (EnglewoodCliffs, NJ: Prentice-Hall, 1993).
  10. [10] Mannerfelt, Robust control design with simplified models, Report no. CODEN:LUTFD2/(TFRT-1021)/1-153, Department of Automatic Control, Lund Institute of Technology, 1981.

Important Links:

Go Back