Analysis of Takagi-Sugeno Fuzzy Models in System Identification for Model-Based Control

S. Lee and G.G. Yen

References

  1. [1] T. Takagi & M. Sugeno, Fuzzy identification of systems and itsapplications to modeling and control, IEEE Trans. on Systems,Man and Cybernetics, 15, 1985, 116–132.
  2. [2] M. Sugeno & T. Yasukawa, A fuzzy logic based approach toqualitative modeling, IEEE Trans. on Fuzzy Systems, 1, 1993, 7–31. doi:10.1109/TFUZZ.1993.390281
  3. [3] R. Murray-Smith & T.A. Johansen, Multiple model approachesto modeling and control (London: Taylor & Francis, 1997).
  4. [4] T.A. Johansen, Operating regime based modeling and identification, doctoral diss., Norwegian Institute of Technology,Trondheim, Norway, 1994.
  5. [5] T.A. Johansen & B.A. Foss, Constructing NARMAX modelsusing ARMAX models, International Journal of Control, 58, 1993, 1125–1153. doi:10.1080/00207179308923046
  6. [6] K. Tanaka, M. Sano, & H. Watanabe, Modeling and control ofcarbon monoxide concentration using a neuro-fuzzy technique,IEEE Trans. on Fuzzy Systems, 3, 1995, 271–279. doi:10.1109/91.413233
  7. [7] K. Tanaka & M. Sano, A robust stabilization problem of fuzzycontrol systems and its application to backing up control of atruck-trailer, IEEE Trans. on Fuzzy Systems 2, 1994, 119–134. doi:10.1109/91.277961
  8. [8] K. Tanaka, T. Ikeda, & H. O. Wang, Fuzzy regulators andfuzzy observers: Relaxed stability conditions and LMI-baseddesigns, IEEE Trans. on Fuzzy Systems, 6, 1998, 250–265. doi:10.1109/91.669023
  9. [9] E. Kim & H. Lee, New approaches to relaxed quadratic stabilitycondition of fuzzy control systems, IEEE Trans. on FuzzySystems, 8, 2000, 523–534. doi:10.1109/91.873576
  10. [10] S.G. Cao, N.W. Rees, & G. Feng, Analysis and design of fuzzycontrol systems using dynamic fuzzy global models, Fuzzy Setsand Systems, 75, 1994, 47–62. doi:10.1016/0165-0114(94)00323-Y
  11. [11] S.G. Cao, N.W. Rees, & G. Feng, Analysis and design fora class of complex control systems, Part II: Fuzzy controllerdesign, Automatica, 33, 1997, 1029–1039. doi:10.1016/S0005-1098(97)00011-3
  12. [12] K. Kiriakidis, A. Grivas, & A. Tzes, Quadratic stability analysisof the Takagi-Sugeno fuzzy model, Fuzzy Sets and Systems,98, 1998, 1–14. doi:10.1016/S0165-0114(96)00390-9
  13. [13] K. Kiriakidis, Fuzzy model-based control of complex plants,IEEE Trans. on Fuzzy Systems, 6,1998, 517–529. doi:10.1109/91.728444
  14. [14] J.E. Slotine & W. Li, Applied nonlinear control (Upper SaddleRiver, NJ: Prentice Hall, 1991).
  15. [15] T.A. Johansen, On the interpretation and identification ofdynamic Takagi-Sugeno fuzzy models, IEEE Trans. on FuzzySystems, 8, 2000, 297–313. doi:10.1109/91.855918
  16. [16] S.G. Cao, N.W. Rees, & G. Feng, Analysis and design of fuzzycontrol systems using dynamic fuzzy global models, Fuzzy Setsand Systems, 75, 1995, 47–62. doi:10.1016/0165-0114(94)00323-Y
  17. [17] K. Kririakidis, A. Grivas, & A. Tzes, Quadratic stabilityanalysis of the Takagi-Sugeno fuzzy model, Fuzzy Sets andSystems, 98, 1998, 1–14. doi:10.1016/S0165-0114(96)00390-9
  18. [18] I.J. Leontaritis & S.A. Billings, Input-output parametericmodels for nonlinear systems, Part I: Deterministic nonlinearsystems; Part II: Stochastic nonlinear systems, InternationalJournal of Control, 41, 1985, 303–344.
  19. [19] P. Van Overchee & B. de Moor, Subspace identification for linearsystems: Theory, implementation, applications (Dordrecht,the Netherlands: Kluwer, 1996).
  20. [20] M. Verhaegen, Identification of the deterministic part of MIMOstate space models given in innovations form from input-outputdata, Automatica, 30, 1994, 61–74. doi:10.1016/0005-1098(94)90229-1
  21. [21] D.J. Leith & W.E. Leithead, Gain-scheduled and nonlinearsystems: Dynamic analysis by velocity-based linearizationfamilies, International Journal of Control, 70, 1998, 289–317. doi:10.1080/002071798222415
  22. [22] S. Lee & G. Yen, On the local interpretation of Takagi-Sugenofuzzy models from a dynamical systems view, Proc. AmericanControl Conf., Anchorage, AK, 2002, 519-524.

Important Links:

Go Back