A Novel CMOS Circuit for Depressing Synapse and its Application to Contrast-Invariant Pattern Classification and Synchrony Detection

Y. Kanazawa, T. Asai, M. Ikebe, and Y. Amemiya

References

  1. [1] R. Douglas, M. Mahowald, & C. Mead, Neuromorphic analogueVLSI, Annual Review of Neuroscience, 18, 1995, 255–281. doi:10.1146/annurev.ne.18.030195.001351
  2. [2] B.L. Barranco, E.S. Sinencio, A.R. V´azquez, & J.L. Huertas,A CMOS implementation of FitzHugh-Nagumo neuron model,IEEE Journal of Solid-State Circuits, 26, 1991, 956–965. doi:10.1109/4.92015
  3. [3] S. Ryckebusch, J.M. Bower, & C. Mead, Modelling small oscillating biological networks in analog VLSI, in D.S. Touretzky (Ed.), Advances in neural information processing systems 1 (Los Altos, CA: Morgan Kaufmann, 1989), 384–393.
  4. [4] A.F. Murray, A. Hamilton, & L. Tarassenko, Programmableanalog pulse-firing neural networks, in D.S. Touretzky (Ed.),Advances in neural information processing systems 1 (LosAltos, CA: Morgan Kaufmann, 1989), 671–677.
  5. [5] J.L. Meador & C.S. Cole, A low-power CMOS circuitwhich emulates temporal electrical properties of neurons, inD.S. Touretzky (Ed.), Advances in neural information processing systems 1 (Los Altos, CA: Morgan Kaufmann, 1989), 678–685.
  6. [6] W. Mass & C.M. Bishop, Pulsed neural networks (Cambridge,MA: MIT Press, 1998).
  7. [7] S.-C. Liu, J. Kramer, G. Indiveri, T. Delbrück, T. Burg, & R.Douglas, Orientation-selective VLSI spiking neurons, NeuralNetworks, 14, 2001, 629–643. doi:10.1016/S0893-6080(01)00054-5
  8. [8] T. Asai, Y. Kanazawa, & Y. Amemiya, A subthreshold MOSneuron circuit based on the Volterra system, IEEE Trans. onNeural Networks, 14(5), 2003, 1308–1312. doi:10.1109/TNN.2003.816357
  9. [9] S. Fusi, Hebbian spike-driven synaptic plasticity for learningpatterns of mean firing rates, Biological Cybernetics, 87, 2002,459–470. doi:10.1007/s00422-002-0356-8
  10. [10] S. Fusi, M. Annunziato, D. Badoni, A. Salamon, & D.J. Amit,Spike-driven synaptic plasticity: Theory, simulation, VLSIimplementation, Neural Computation, 12, 2000, 2227–2258. doi:10.1162/089976600300014917
  11. [11] W. Senn, I. Segev, & M. Tsodyks, Reading neuronal synchronywith depressing synapses, Neural Computation, 10, 1998,815–819. doi:10.1162/089976698300017494
  12. [12] A. Kayser, N.J. Priebe, & K.D. Miller, Contrast-dependent non-linearities arise locally in a model of contrast-invariant orientation tuning, Journal of Neurophysiology, 85, 2001, 2130–2149.
  13. [13] G. Bugmann, Synaptic depression increases the selectivity of aneuron to its preferred pattern and binarizes the neural code,Biosystems, 67, 2002, 17–25. doi:10.1016/S0303-2647(02)00059-X
  14. [14] C. Rasche & R.H.R. Hahnloser, Silicon synaptic depression,Biological Cybernetics, 84, 2001, 57–62. doi:10.1007/s004220170004
  15. [15] S.-C. Liu, Analog VLSI circuits for short-term dynamicsynapses, EURASIP Journal of Applied Signal Processing, 7,2003, 620–628. doi:10.1155/S1110865703302094
  16. [16] L.F. Abbot, J.A. Varela, K. Sen, & S.B. Nelson, Synaptic depression and cortical gain control, Science, 275, 1997, 220–224. doi:10.1126/science.275.5297.221
  17. [17] M. Tsodyks, K. Pawelzik, & H. Markram, Neural networks withdynamic synapses, Neural Computation, 10, 1998, 821–835. doi:10.1162/089976698300017502
  18. [18] S.-C. Liu, J. Kramer, G. Indiveri, T. Delbrück, & R. Douglas, Analog VLSI: Circuits and principles (cambridge, MA: MIT Press, 2002), 93-120.

Important Links:

Go Back