ENERGY CONSUMPTION PREDICTION USING SEQUENTIAL MONTE CARLO METHODS

O.A. Alsayegh and O.A. Almatar

References

  1. [1] C.S. Chen, Y. Ke, J.S. Wu, & M.S. Kang, Application of Petrinets to solve distribution system contingency by consideringcustomer load patterns, IEEE Trans. on Power Systems, 17 (2),2002, 417–423. doi:10.1109/TPWRS.2002.1007912
  2. [2] R. Conkling, A California generation capacity market, TheElectricity Journal, 11 (8), 1998, 27–35. doi:10.1016/S1040-6190(98)00080-3
  3. [3] S. Lee, Simulation model explores alternative wholesale powermarket structure, IEEE Computer Applications in Power,15 (2), 2002, 28–35. doi:10.1109/67.993757
  4. [4] J. McCalley & B. Krause, Rapid transmission capacity margindetermination for dynamic security assessment using artificialneural networks, Electric Power Systems Research, 34 (1),1995, 37–45. doi:10.1016/0378-7796(95)00955-H
  5. [5] N. Burney, O. Mohammed, S. Hamada, & S. Al-Fulaij, Demandfor electricity in Kuwait: Estimate for future consumption andcapacity requirements, Technical Report, Kuwait Institute forScientific Research, Report No. TE023K, Safat, Kuwait, 1999.
  6. [6] S. Vemuri, B. Hoveida, & S. Mohebbi, Short-term load fore-casting based on weather load models, Proc. IFAC Conf. onPower System and Power Plant Control, Beijing, China, 1986,565–570.
  7. [7] P. Bolzern & G. Fronza, Role of weather inputs in short-termforecasting of electric load, Electrical Power Energy Systems,8 (1), 1986, 42–46. doi:10.1016/0142-0615(86)90024-4
  8. [8] J. Park, Y. Park, & K. Lee, Composite modeling for adaptiveshort-term load forecasting, IEEE Trans. on Power Systems,6, 1991, 134–142. doi:10.1109/59.76686
  9. [9] M. Kandil, S. El-Dediky, & N. Hasanien, The implementationof long-term forecasting strategies using a knowledge-basedexpert system: Part 2, Electric Power Systems Research, 58,2001, 19–25. doi:10.1016/S0378-7796(01)00098-0
  10. [10] O. Alsayegh, Short-term load forecasting using seasonal ar-tificial neural networks, International Journal of Power andEnergy Systems, 23 (3), 2003, 137–142.
  11. [11] O. Alsayegh, Electric power generating capacity risk assess-ment: System performance evaluation for the years 2000 and2001, Technical Report, Kuwait Institute for Scientific Re-search, Report No. KISR 6987, Safat, Kuwait, 2004.
  12. [12] A. Doucet, S. Godsill, & C. Andrieu, On sequential Monte Carlosampling methods for Bayesian filtering, Statistical Computing,10, 2000, 197–208. doi:10.1023/A:1008935410038
  13. [13] A. Doucet, J. de Freitas, & N. Gorden, Sequential Monte Carlomethods in practice (New York: Springer-Verlag, 2001).
  14. [14] J. Liu & R. Chen, Sequential Monte Carlo methods for dy-namical systems, Journal of American Statistical Association,93, 1998, 1032–1044. doi:10.2307/2669847
  15. [15] S. Arulampalam, S. Maskell, N. Gorden, & T. Clapp, Atutorial on particle filters for online nonlinear/non-GaussianBayesian tracking, IEEE Trans. on Signal Processing, 50 (2),2002, 174–188. doi:10.1109/78.978374
  16. [16] F. Gustafsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson,& P.J. Nordlund, Particle filters for positioning, navigation,and tracking, IEEE Trans. on Signal Processing, 50 (2), 2002,425–436. doi:10.1109/78.978396
  17. [17] O. Brun, V. Teulier, & J.M. Garcia, Parallel particle filtering,Journal of Parallel and Distributed Computing, 62, 2002,1186–1202.34 doi:10.1006/jpdc.2002.1843
  18. [18] M. Norgaard, O. Ravn, N.K. Poulsen, & L.K. Hansen, Neuralnetworks modelling and control of dynamic systems (New York:Springer-Verlag, 2000).
  19. [19] R. Hecht-Nielson, Neurocomputing (New York: Addison Wes-ley, 1990).
  20. [20] A.R. Barron, Universal approximation bounds for superpo-sitions of a sigmoid function, IEEE Trans. on InformationTheory, 39, 1993, 930–945. doi:10.1109/18.256500
  21. [21] T. Soderstrom & P. Stoica, System identification (New York:Prentice-Hall, 1989).

Important Links:

Go Back