G.M. Behery
[1] B.B. Mandlbrot, The fractal geometry of nature (San Francisco,USA: Freeman, 1981). [2] H.-O. Peitgen, H. J¨ugens, & D. Saupe, Chaos and fractals(New York: Springer Verlag, 1992). [3] H.-O. Peitgen & D. Saupe, The science of fractal image (NewYork: Springer-Verlag, 1985). [4] C.O. Kiselman, Regularity properties of distance transforma-tions in image analysis, Computer Vision and Image Under-standing, 64 (1), 1996, 290–298. [5] A.P. Pentland, Fractal-based description of natural scenes,IEEE Transaction on Pattern Analysis and Machine Intelli-gence, 6 (6), 1984, 661–674. [6] J.-F. Gouyet, Physics and fractal structure (New York:Springer Verlag, 1996). [7] M.F. Barnsley, Fractals everywhere (San Diego, CA: AcademicPress Inc., 1991). [8] D. Stoyan & H. Stoyan, Fractals random shapes and pointfields methods of geometrical statistic (New York: John Wiley& Sons, 1994). [9] N. Sarkar & B.B. Chaudhuri, An efficient approach to estimatefractal dimension of textural images, Pattern Recognition,25 (9), 1992, 1015–1042. doi:10.1016/0031-3203(92)90066-R [10] P. Corsini & G. Frsini, Properties of the multidimensionalgeneralized distance Fourier transform, IEEE Transaction onComputers, c-28 (11), 1979, 819–830. doi:10.1109/TC.1979.1675262 [11] M. Sid-Ahmad, Digital image processing (New York: McGrawHill Inc., 1996). [12] R.C. Gonzalez & P. Wintz, Digital image processing (Reading,MA: Addison-Wesley, 1987). [13] R.C. Gonzalez & P. Wintz, Digital image processing, 2nd ed.(Reading, MA: Addison-Wesley, 1991). [14] P.P Ohanion & R.C. Dubes, Performance evaluation for fourclasses of texture feature, Pattern Recognition, 25 (8), 1992,811–819. [15] M. Fialany, K.A. Blanton, Real-world fractals (New York:M&T-Books, 1991).
Important Links:
Go Back