Fazal-ur-Rehman and N. Ahmed
[1] R.W. Brockett, Asymptotic stability and feedback stabilization,in R.W. Brockett, R.S. Millman, & H.J. Sussman (eds.),249Differential geometric control theory (Boston: Birkhauser,1983), 181–191. [2] I. Kolmanovsky & N.H. McClamroch, Developments in nonholonomic control problems, IEEE Control Systems Magazine,15, 1995, 20–36. doi:10.1109/37.476384 [3] J.B. Pomet, Explicit design of time-varying stabilizing controllaws for a class of controllable systems without drift, Systemsand Control Letters, 18, 1992, 147–158. doi:10.1016/0167-6911(92)90019-O [4] C. Samson, Control of chained systems: Application to pathfollowing and time-varying point-stabilization of mobile robots,IEEE Trans. on Automatic Control, 40 (1), 1995, 64–77. doi:10.1109/9.362899 [5] A. Astolfi, Discontinuous control of the Brockett integrator,European Journal of Control, 4 (1), 1998, 49–63. [6] P. Lucibello & G. Oriolo, Robust stabilization via iterative statesteering with application to chained-form systems, Automatica,37 (1), 2001, 71–79. doi:10.1016/S0005-1098(00)00124-2 [7] M.S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Trans. onAutomatic Control, 43 (4), 1998, 475–482. doi:10.1109/9.664150 [8] J. Wei & E. Norman, On global representations of the solutionsof linear differential equations as a product of exponentials,Proc. American Mathematical Society, 1964, 327–334. doi:10.2307/2034065 [9] H.J. Sussmann, A general theorem on local controllability,SIAM Journal of Control and Optimization, 25 (1), 1987,158–194. doi:10.1137/0325011
Important Links:
Go Back