USE OF OPTIMAL QUASI– VELOCITY TRAJECTORIES

P. Herman

References

  1. [1] D. Koditschek, Robot kinematics and coordinate transformations, Proc. of the 24th IEEE Conf. on Decision and control, 1985, 1-4.
  2. [2] L. Sciavicco & B. Siciliano, Modeling and control of robot manipulators (New York, NY, USA: The McGraw-Hill Companies, Inc., 1996).
  3. [3] J.-J. Slotine & W. Li, Applied nonlinear control (New Jersey, WA: Prentice Hall, 1991).
  4. [4] M.W. Spong & M. Vidyasagar, Robot dynamics and control(New York: John Wiley & Sons, Inc., 1989).
  5. [5] J.S. Park, Motion profile planning of repetitive point-to-point control for maximum energy conversion efficiency under acceleration conditions, Mechatronics, 6, 1996, 649–663. doi:10.1016/0957-4158(96)00012-8
  6. [6] M. Galicki, The planning of robotic optimal motions in the presence of obstacles, The International Journal of Robotic Research, 17, 1998, 248–259. doi:10.1177/027836499801700303
  7. [7] T.-J. Tarn, N. Xi., & A.K. Bejczy, Path-based approach to integrated planning and control for robotic systems, Automatica, 32, 1996, 1675–1687.
  8. [8] T.A.H. Coelho, L. Yong, & V.F.A. Alves, Decoupling ofdynamic equations by means of adaptive balancing of 2-dofopen-loop mechanisms, Mechanism and Machine Theory, (39),2004, 871–881. doi:10.1016/j.mechmachtheory.2004.02.011
  9. [9] J.L. Pons, R. Ceres, A.R. Jimenez, L. Calderon, & J.M. Martin, Nonlinear performance index (NPI): a tool for manipulator dynamics improvement, Journal of Intelligent and Robotic Systems, 18, 1997, 277–287. doi:10.1023/A:1007902913510
  10. [10] A. Jain & G. Rodriguez, Diagonalized Lagrangian robot dynamics, IEEE Trans. on Robotics and Automation, 11, 1995,571–584. doi:10.1109/70.406941
  11. [11] T.A. Loduha & B. Ravani, On first-order decoupling of equations of motion for Constrained dynamical systems, Trans. of the ASME Journal of Applied Mechanics, (62), 1995, 216–222. doi:10.1115/1.2895905
  12. [12] T.R. Kane & D.A. Levinson, The use of Kane’s dynamicalequations in robotics, The International Journal of Robotics Research, (2), 1983, 3–21. doi:10.1177/027836498300200301
  13. [13] M. Athans & P.L. Falb, Optimal control: an introduction to the theory and its applications (New York, NY, McGraw-Hill Book Company, 1966).
  14. [14] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, & E.F. Mishchenko, The Mathematical Theory of Optimal Processes (New York, NY, USA: John Wiley, 1962).
  15. [15] P. Herman, Sliding mode control of manipulators using first-order equations of motion with diagonal mass matrix, Journal of the Franklin Institute (342), 2005, 353–363. doi:10.1016/j.jfranklin.2004.12.001

Important Links:

Go Back