IDENTIFICATION OF A COMPUTATIONALLY EFFICIENT NUMERICAL MODEL FOR HONEYCOMBS USING A MULTI-OBJECTIVE TAGUCHI OPTIMIZATION PROCESS

S. Amine,∗ A.S. Milani,∗∗ and J.A. Nemes∗

References

  1. [1] W. Goldsmith & D.L. Louie, Axial perforation of aluminumhoneycombs by projectiles, International Journal of Solids andStructures, 32 (8–9), 1995, 1017–1046.
  2. [2] M.S.H. Fatt & K.S. Park, Perforation of honeycomb sandwichplates by projectiles, Composites Part A: Applied Science andManufacturing, 31 (8), 2000, 889–899.
  3. [3] T. Nicholas & R.F. Recht, Introduction to impact phenomena,in J.A. Zukas (Ed.), High velocity impact dynamics (New York:Wiley, 1990), 1–63.
  4. [4] E. Wu & W.-S. Jiang, Axial crush of metallic honeycombs.International Journal of Impact Engineering, 19 (5–6), 1997,439–456.
  5. [5] W. Goldsmith, G. Wang, K. Li, & D. Crane, Perforationof cellular sandwich plates, International Journal of ImpactEngineering, 19 (5–6), 1997, 361–379.
  6. [6] H. Zhao & G. Gary, Crushing behaviour of aluminum honey-combs under impact loading, International Journal of ImpactEngineering, 21 (10), 1998, 827–836.
  7. [7] D. Okumara, N. Ohno, & H. Noguchi, Post-buckling analysisof elastic honeycombs subject to in-plane biaxial compression,International Journal of Solids and Structures, 39 (13–14),2002, 3487–3503.
  8. [8] L.J. Gibson & M.F. Ashby, Cellular solids: Structure andproperties (Cambridge: Cambridge University Press, 1997).
  9. [9] I.G. Masters & K.E. Evans, Models for the elastic deformationof honeycombs, Composite Structures, 35 (4), 1996, 403–422.
  10. [10] G. Shi & P. Tong, Equivalent transverse shear stiffness of hon-eycomb cores, International Journal of Solids and Structures,32 (10), 1995, 1383–1393.
  11. [11] X.F. Xu & P. Qiao, Homogenized elastic properties of hon-eycomb sandwich with skin effect, International Journal ofSolids and Structures, 39 (8), 2002, 2153–2188.
  12. [12] M. Grediac, A finite element study of the transverse shear inhoneycomb cores, International Journal of Solids and Struc-tures, 30 (13), 1993, 1777–1788.179
  13. [13] X.E. Guo & L.J. Gibson, Behaviour of intact and damagedhoneycombs: A finite element study, International Journal ofMechanical Sciences, 41 (1), 1999, 85–105.
  14. [14] D. Ruan, G. Lu, B. Wang, & T.X. Yu, In-plane dynamiccrushing of honeycombs – a finite element study, InternationalJournal of Impact Engineering, 28 (2), 2003, 161–182.
  15. [15] M.Q. Nguyen, S.S. Jacombs, R.S. Thomson, D. Hachenberg,& M.L. Scott, Simulation of impact on sandwich structures,Composite Structures, 67 (2), 2005, 217–227.
  16. [16] W. Herrmann, Constitutive equation for the dynamic com-paction of ductile porous materials, Journal of Applied Physics,40 (6), 1969, 2490–2499.
  17. [17] M. Carroll & A.C. Holt, Suggested modification of the P–αmodel for porous materials, Journal of Applied Physics, 43 (2),1972, 759–761.
  18. [18] T. Bitzer, Honeycomb technology: Materials, design, manu-facturing, applications and testing (London: Chapman & Hall,1997).
  19. [19] R.K. Roy, Design of experiment using the Taguchi approach(New York: Wiley, 2001).
  20. [20] P. Sen & J.B. Yang, Multiple criteria decision support inengineering design (New York: Springer, 1998).
  21. [21] S. Amine, Equivalent numerical model for honeycomb sub-jected to high speed impact, Master’s Thesis, Department ofMechanical Engineering, McGill University, 2005.
  22. [22] Hibbitt, Karlsson & Sorensen, Inc. ABAQUS Analysis User’sManual, Version 6.4, 2002.
  23. [23] A.B. Wardlaw, R. McKeown, & H. Chen, Implementation andapplication of the P–α equation of state in the DYSMAScode, Naval Surface Warfare Center, Dahlgren Division, 1996,Report No. NSWCDD/TR-95/107, 1–72.
  24. [24] R. Jin, W. Chen, & A. Sudjianto, An efficient algorithm forconstructing optimal design of computer experiments, Proc.ASME Design Engineering Technical Conferences and Com-puters and Information in Engineering Conference, Chicago,Illinois, USA, 2003, No. 48760.

Important Links:

Go Back