MODELLING VAPOUR CAVITATION IN PIPES WITH FLUID–STRUCTURE INTERACTION

L. Hadj-Ta¨eb∗ and E. Hadj-Ta¨eb∗ ı ı

References

  1. [1] L. Bergeron, Waterhammer in hydraulics and wave surges inelectricity (New York: John Wiley & Sons, 1961).
  2. [2] V.L. Streeter & E.B. Wylie, Hydraulic transients (New York:McGraw-Hill, 1967).
  3. [3] J. Siemons, The phenomenon of cavitation in a horizontalpipe-line due to a sudden pump failure, Journal of Hydraulicresearch, 5(2), 1967, 135–152.
  4. [4] E.B. Wylie, Simulation of vaporous and gaseous cavitation,ASME Journal of Fluids Engineering, 106, 1984, 307–311.
  5. [5] E.B. Wylie & V.L. Streeter, Fluid transients in systems (En-glewood Cliffs, NJ: Prentice Hall, 1993).
  6. [6] A. Bergant & A.R. Simpson, Pipeline column separation flowregimes, Journal of Hydraulic Engineering, ASCE, 125(8),1999, 835–848.
  7. [7] J.-J. Shu, Modelling vaporous cavitation on fluid transients,International Journal of Pressure Vessels and Piping, 80(3),2003, 187–195.
  8. [8] L. Hadj-Ta¨ıeb & E. Hadj-Ta¨ıeb, Numerical simulation of tran-sient vaporous cavitating flow in horizontal pipelines, Inter-national Journal of Modelling and Simulation, 27(4), 2007,347–354.
  9. [9] E. Hadj-Ta¨ıeb & T. Lili, Les ´ecoulements transitoires dans lesconduites d´eformables avec d´egazage de l’air dissous (Transientflows in plastic pipes with dissolved air degasification), LaHouille Blanche, 5, 2001, 99–107 (in French).
  10. [10] K. Sanada, A. Kitagawa, & T. Takenaka, A study on analyt-ical methods by classification of column separations in waterpipeline, Transactions of the JSME, Series B, 56(523), 1990,585–593 (in Japanese).
  11. [11] M. Kessal, Mod´elisation en ´ecoulement homog`ene desph´enom`enes de cavitation lors des r´egimes transitoires enconduite, Engineer-Doctor These, Mechanic speciality, INSAof Lyon, 1987.
  12. [12] R. Courant & K.O. Friederichs, Supersonic flow and shockwaves (New York: Interscience Publishers, 1948).
  13. [13] S. Stuckenbruck, D.C. Wiggert, & R.S. Otwell, The influenceof pipe motion on acoustic wave propagation, Transactions ofthe ASME, 107, 1985, 518–522.
  14. [14] P.D. Lax & B. Wendroff, Difference schemes for hyperbolicequations with high order of accuracy, Communications onPure and Applied Mathematics, 17, 1966, 381–398.269

Important Links:

Go Back