IRIS BIOMETRICS: HUMAN IDENTIFICATION USING FORCE FIELD

Omaima Nomir

References

  1. [1] R. Bolle, J. Connell, S. Pankanti, N. Ratha, & A. Senior,Guide to biometrics (New York: Springer-Verlag, 2004).
  2. [2] A. Zaim, Automatic segmentation of iris images for the purposeof identification, IEEE International Conference on ImageProcessing, 3, 2005, III-273–276.
  3. [3] D. Cho, K. Park, D. Rhee, Y. Kim, & J. Yang, Pupil and irislocalization for iris recognition in mobile phones, Proceedingsof the 7th ACIS Int. Conf. on Software Engineering, Las Vegas,Nevada, 2006, 197–201.
  4. [4] F. Hao, R. Anderson, & J. Daugman, Combining crypto withbiometrics effectively, IEEE Transactions on Computers, 55(9),2006, 1081–1088.
  5. [5] E. Newton & P. Phillips, Meta-analysis of third-party evalua-tions of iris recognition, IEEE Transactions on Systems, Manand Cybernetics, 39(1), 2009, 4–11.
  6. [6] K. Miyazawa, K. Ito, T. Aoki, K. Kobayashi, & H. Nakajima,An effective approach for iris recognition using phase-basedimage matching, IEEE Transactions on PAMI, 30(10), 2008,1741–1756.
  7. [7] H. Liang, Z. Cai, X. Chen, & K. Shuang, Iris recognitionbased on characters of Iris’s speckles, 7th World Congress onIntelligent Control and Automation, Chongqing, China, 2008,6793–6797.
  8. [8] O. Nomir & E. Radwan, Human identification using iris fea-tures, Proceedings of the Sixth IASTED International Con-ference on Advances in Computer Science and Applications,Sharm El Sheikh, Egypt, 2010, 155–158.
  9. [9] L. Masek, Bachelor’s Dissertation, School of Computer Sci-ence and Software Engineering, Recognition of human iris pat-terns for biometric identification, The University of WesternAustralia, Australia, 2003.
  10. [10] R. Gonzalez & R. Woods, Digital image processing (NewJersey: Prentice Hall, 2001).
  11. [11] L. Ma, T. Tan, Y. Wang, & D. Zhang, Personal identificationbased on iris texture analysis, IEEE Transactions on PAMI,25(12), 2003, 1519–1533.
  12. [12] L. Ma, T. Tan, Y. Wang, & D. Zhang, Efficient iris recognitionby characterizing key local variations, IEEE Transactions onImage Processing 13(6), 2004, 739–750.
  13. [13] O. Nomir & M. Abdel-Mottaleb, Dental biometrics: MatchingX-ray dental images using teeth shapes and appearances, IEEETransactions on Information Forensics and Security, 2(2),2007, 188–197.
  14. [14] O. Nomir, A framework for automating human identificationusing dental X-ray radiograph, Doctoral Dissertation, Depart-ment of Electrical and Computer Engineering, University ofMiami, FL, USA, 2006.
  15. [15] D. Hurley, M. Nixon, & J. Carter, A new force field transformfor ear and face recognition, Proc. ICIP, Vancouver, Canada,2000, 25–28.
  16. [16] T. Cootes & C. Taylor, Statistical models of appearancefor computer vision, Technical Report, Imaging Science andBiomedical Engineering, University of Manchester, Manch-ester, UK, 2000.
  17. [17] D.P. Huttenlocher, G.A. Klanderman, & W.J. Ruchlidge, Com-paring images using the Hausdorff distance, Pattern Recogni-tion, 15(9), 1993, 850–862.
  18. [18] P.J. Phillips, K.W. Bowyer, & P.J. Flynn, Comment on theCASIA version 1.0 iris dataset, IEEE Transactions on PAMI,29(10), 2007, 1869–1870.

Important Links:

Go Back