Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
INCREASING CONVERSION OF CO2 TO CO VIA RWGS REACTION: SIMULATION AND PROCESS DESIGN
Farhang Abdollahi, Handan Tezel, and Stephen Aplin
References
[1] K. Schultz, S.L. Bogart, R.P. Noceti, and A.V. Cugini, Synthesis of hydrocarbon fuels using renewable and nuclear energy, Nuclear Technology, 166(1), 56–63.
[2] G. Centi and S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels, Catalysis Today, 148(3–4), 191–205.
[3] O.S. Joo, K.D. Jung, I. Moon, A.Y. Rozovskii, G.I. Lin, S.H. Han, and S.J. Uhm, Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process), Industrial and Engineering Chemistry Research, 38(5), 1808–1812.
[4] O.S. Joo, K.D. Jung, and Y.S. Jung, CAMERE process for methanol synthesis from CO2 hydrogenation, Carbon Dioxide Utilization for Global Sustainability, 153, 67–72.
[5] F. Bustamante, R.M. Enick, A.V. Cugini, R.P. Killmeyer, B.H. Howard, K.S. Rothenberger, M.V. Ciocco, and B.D. Morreale, High-temperature kinetics of the homogeneous reverse water–gas shift reaction, AIChE Journal, 50(5), 2004, 1028–1041.
[6] G.C. Wang, L. Jiang, Y.H. Zhou, Z.S. Cai, Y.M. Pan, X.Z. Zhao, Y.W. Li, Y.H. Sun, B. Zhong, X.Y. Pang, W. Huang, and K.C. Xie, Investigation of the kinetic properties for the forward and reverse WGS reaction by energetic analysis, Journal of Molecular Structure-Theochem, 634, 2003, 23–30.
[7] J.E. Whitlow and C.F. Parrish, Operation, modeling and analysis of the reverse water gas shift process, Space Technology and Applications International Forum – Staif, 654, 2003, 1116–1123.
[8] J.L. Hu, K.P. Brooks, J.D. Holladay, D.T. Howe, and T.M. Simon, Catalyst development for microchannel reactors for Martian in situ propellant production, Catalysis Today, 125(1–2), 2007, 103–110.
[9] C.S. Chen and W.H. Cheng, Study on the mechanism of CO formation in reverse water gas shift reaction over Cu/SiO2 catalyst by pulse reaction, TPD and TPR, Catalysis Letters, 83(3–4), 2002, 121–126.
[10] J.D. Holladay, K.P. Brooks, P. Humble, J. Hu, and T.M. Simon, Compact reverse water-gas-shift reactor for extraterrestrial in situ resource utilization, Journal of Propulsion and Power, 24(3), 2008, 578–582.
[11] K. Brooks, S. Rassat, J. Hu, S. Stenkamp, S. Schlahta, J. Bontha, J. Holladay, T. Simon, K. Romig, and C. Howard, Development of a microchannel in situ propellant production system, Space Technology and Applications International Forum – Staif, 813, 2006, 1111–1121.
[12] J.D. Holladay, K.P. Brooks, R. Wegeng, J. Hu, J. Sanders, and S. Baird, Microreactor development for Martian in situ propellant production, Catalysis Today, 120(1), 2007, 35–44.
[13] L.H. Wang, S.X. Zhang, and Y.A. Liu, Reverse water gas shift reaction over co-precipitated Ni-CeO2 catalysts, Journal of Rare Earths, 26(1), 2008, 66–70.
[14] H. Gunes and R. Yildirim, Low temperature water-gas shift reaction on Au-CeO2/Al2O3 catalysts, International Journal of Chemical Reactor Engineering, 8(1), 2010.
[15] S.W. Park, O.S. Joo, K.D. Jung, H. Kim, and S.H. Han, Development of ZnO/Al2O3 catalyst for reverse-water-gas-shift reaction of CAMERE (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) process, Applied Catalysis a-General, 211(1), 2001, 81–90.
[16] F.D. Doty, G.N. Doty, J.P. Staab, and L.L. Holte, Toward efficient reduction of CO2 to Co for renewable fuels, Es2010: Proc. ASME 4th Int. Conf. on Energy Sustainability, 1, 2010, 775–784.
[17] M. Peer, S.M. Kamali, M. Mahdeyarfar, and T. Mohammadi, Separation of hydrogen from carbon monoxide using a hollow fiber polyimide membrane: experimental and simulation, Chemical Engineering and Technology, 30(10), 2007, 1418–1425.
[18] A. Brunetti, G. Barbieri, and E. Drioli, Integrated membrane system for pure hydrogen production: a Pd-Ag membrane reactor and a PEMFC, Fuel Processing Technology, 92(1), 2011, 166–174.
[19] S. Shelley, Capturing CO2: membrane systems move forward, Chemical Engineering Progress, 105(4), 2009, 42–47.
[20] R.C. Costello and Assoc., Inc. COPureSM carbon monoxide purification technology, http://www.rccostello.com/copure.html.
[21] K.S. Walton and M.D. LeVan, A novel adsorption cycle for CO2 recovery: experimental and theoretical investigations of a temperature swing compression process, Separation Science and Technology, 41(3), 2006, 485–500.
[22] G.W. Chen and Q. Yuan, Methanol synthesis from CO2 using a silicone rubber/ceramic composite membrane reactor, Separation and Purification Technology, 34(1–3), 2004, 227–237.
[23] E.R. Riegel, Coal technology, in J.A. Kent (Ed.), Riegel’s handbook of industrial chemistry (Springer, 2003), 626.
[24] J. Levene, B. Kroposki, and G. Sverdrup, Wind energy and production of hydrogen and electricity – opportunities for renewable hydrogen, NREL/CP-560-39534, National Renewable Energy Laboratory, 2006.
Important Links:
Abstract
DOI:
10.2316/Journal.215.2013.2.215-1056
From Journal
(215) Alternative Energy - 2013
Go Back