INTELLIGENT CONTROL TECHNIQUES FOR ELECTRICAL ACTUATED AUTOMOTIVE COOLING SYSTEMS

Asma A. Al-Tamimi, Ahmad M. Al-Jarrah, and Mohammad H. Salah

References

  1. [1] A. Torregrosa, A. Broatch, P. Olmeda, and C. Romero, Assessment of the influence of different cooling system configurations on engine warm-up, emissions, and fuel consumption, International Journal of Automotive Technology, 9(4), 2008, 447–458.
  2. [2] F. Melzer, U. Hesse, and M. Schmitt, Thermomanagement, SAE Paper 1999-01-0238, 1999.
  3. [3] C. Brace, H. Burnham-Slipper, R. Wijetunge, N. Vaughan, K. Wright, and D. Blight, Integrated cooling systems for passenger vehicles, SAE Paper 2001-01-1248, 2001.
  4. [4] D. Allen and M. Lasecki, Thermal management evolution and controlled coolant flow, SAE Paper 2001-01-1732, 2001.
  5. [5] T. Mitchell, M. Salah, J. Wagner, and D. Dawson, Automotive thermostat valve configurations – enhanced warm-up performance, ASME Journal of Dynamics, Systems, Measurements, and Control, 131(4), 2009, 044501-1 to 044501-7.
  6. [6] A. Choukroun and M. Chanfreau, Automatic control of electric actuators for an optimized engine cooling thermal management, SAE Paper 2001-01-1758, 2001.
  7. [7] M. Salah, P. Frick, J. Wagner, and D. Dawson, Hydraulic actuated automotive cooling systems – nonlinear control and test, Control Engineering Practice, 17(5), 2009, 609–621.
  8. [8] M. Salah, T. Mitchell, J. Wagner, and D. Dawson, Nonlinear control strategy for advanced vehicle thermal management systems, IEEE Transactions on Vehicular Technology, 57(1), 2008, 127–137.
  9. [9] M. Salah, T. Mitchell, J. Wagner, and D. Dawson, A smart multiple-loop automotive cooling system – model, control, and experimental study, IEEE/ASME Transactions on Mechatronics, 15(1), 2010, 117–124.
  10. [10] K. Kim, K. Choi, K.H. Lee, and K.S. Lee, Active coolant control strategies in automotive engines, International Journal of Automotive Technology, 11(6), 2010, 767–772.
  11. [11] R. Chalgren, Jr. and L. Barron, Jr., Development and verification of a heavy duty 42/14V electric powertrain cooling system, SAE Paper 2003-01-3416, 2003.
  12. [12] R. Chalgren, Jr. and D. Allen, Light duty diesel advanced thermal management, SAE Paper 2005-01-2020, 2005.
  13. [13] J. Wagner, E. Marotta, and I. Paradis, Thermal modeling of engine components for temperature prediction and fluid flow regulation, SAE Paper 2001-01-1014, 2001.
  14. [14] J. Eberth, J. Wagner, B. Afshar, and R. Foster, Modeling and validation of automotive “smart thermal management system architecture, SAE Paper 2004-01-0048, 2004.
  15. [15] R. Henry, J. Koo, and C. Richter, Model development, simulation and validation, of power train cooling system for a truck application, SAE Paper 2001-01-1731, 2001.
  16. [16] C. Lehner, G. Parker, O. Arici, and J. Johnson, Design and development of a model based feedback controlled cooling system for heavy duty diesel track applications using a vehicle engine cooling system simulation, SAE Paper 2001-01-0336, 2001.
  17. [17] P. Setlur, J. Wagner, D. Dawson, and E. Marotta, An advanced engine thermal management system: Nonlinear control and test, IEEE/ASME Transactions on Mechatronics, 10(2), 2005, 210–220.
  18. [18] R. Page, W. Hnatczuk, and J. Kozierowski, Thermal management for the 21st century – improved thermal control and fuel economy in an army medium tactical vehicle, SAE Paper 2005-01-2068, 2005.
  19. [19] J. Redfield, B. Surampudi, R. Gustavo, A. Montemayo, H. McKee, T. Edwards, and M. Lasecki, Accessory electrification in class 8 tractors, SAE paper 2006-01-0215, 2006.
  20. [20] M. Abu-Khalaf and F. Lewis, Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach, Automatica, 41(5), 2005, 779–791.
  21. [21] A. Al-Tamimi, F. Lewis, and M. Abu-Khalaf, Discrete-time nonlinear HJB solution using approximate dynamic programming: convergence proof, IEEE Transactions on Systems, Man, Cybernetics – Part B, 38(4), 2008, 943–949.
  22. [22] K. Saji and M. Sasikumar, Tuning employing fuzzy and ANFIS for a pH process, Control and Intelligent Systems, 40(2), 2012, 2246–2306.
  23. [23] C.-S. Shieh, FPGA chip with fuzzy PWM control for synchronizing a chaotic system, Control and Intelligent Systems, 40(3), 2012, 2339–2341.
  24. [24] R. Jain, V. Thirumavalavan, T. Radhakrishnan, and S. Natarajan, Design of hybrid fuzzy-PI controllers for MIMO process, Control and Intelligent Systems, 40(4), 2012, 2220–2365.
  25. [25] K. Hornik, M. Stinchcombe, and H. White, Universal approximation of unknown mapping and its derivative using multilayer feedforward networks, Neural Networks, 3(5), 1990, 551–560.
  26. [26] B. Finlayson, The method of weighted residuals and variational principles: with application in fluid mechanics, heat and mass transfer (New York: Academic Press, 1972).
  27. [27] M. Montazeri-Gh, H. Yousefpour, and S. Jafari, Fuzzy logic computing for design of gas turbine engine fuel control system, Proc. Int. Conf. on Comp. and Auto. Eng., 5, 2010, 723–727.
  28. [28] J. Layne, Fuzzy model reference learning control, M.Sc. Thesis, The Ohio State University, OH, 1992.

Important Links:

Go Back