ROBUSTNESS EVALUATION OF A MULTIVARIABLE FRACTIONAL ORDER PI CONTROLLER FOR TIME DELAY PROCESSES

Cristina I. Muresan, Eva H. Dulf, and Clara Ionescu

References

  1. [1] A. Oustaloup, B. Mathieu, and P. Lanusse, The CRONE control of resonant plants: application to a flexible transmission, European Journal of Control, 1, 1995, 113–121.
  2. [2] I. Podlubny, Fractional-order systems and PIλDμ-controllers, IEEE Transactions on Automation and Control, 44, 1999, 208–214.
  3. [3] D. Xue and Y. Chen, A comparative introduction of four fractional order controllers, Proc. 4th IEEE World Congress on Intelligent Control and Automation, Shanghai, China, 2002, 3228–3235.
  4. [4] Y. Luo, Y.Q. Chen, C.Y. Wang, and Y.G. Pi, Tuning fractional order proportional integral controllers for fractional order systems, Journal of Process Control, 20, 2010, 823–831.
  5. [5] A. Oustaloup, La Commande CRONE: Commande Robuste d’Ordre Non Entier (Paris, France: Hermes, 1991).
  6. [6] C.A. Monje, B.M. Vinagre, Y.Q. Chen, and V. Feliu, Proposals for fractional PID-tuning, Proc. First IFAC Symposium on Fractional Differentiation and its Application (FDA04), Bordeaux, France, 2004.
  7. [7] D. Xue, C. Zhao, and Y.Q. Chen, Fractional order PID control a DC-motor with elastic shaft: a case study, Proc. 2006 American Control Conference, Minnesota, 2006, 3182–3187.
  8. [8] A. Oustaloup, J. Sabatier, and P. Lanusse, From fractional robustness to CRONE control, Fractional Calculus and Applied Analysis, 2, 1999, 1–30.
  9. [9] X. Song, Y.Q. Chen, I. Tejado, and B.M. Vinagre, Multivariable fractional order PID controller design via LMI approach, Proc. 18th IFAC World Congress, Milano, Italy, 2011.
  10. [10] S. Chenikher, S. Abdelmalek, and M. Sedraoui, Control of uncertainly multi-variable system with fractional PID, Proc. 2012 16th IEEE Mediterranean Electrotechnical Conference (MELECON), Yasmine Hammamet, Tunisia, 2012, 1079–1082.
  11. [11] C.I. Muresan, E.H. Dulf, and C. Ionescu, Multivariable fractional order PI controller for time delay processes, International Conference on Engineering and Applied Science, DOI: 10.2316/P.2012.785-029, 27–29 December 2012, Colombo, Sri Lanka.
  12. [12] J. Chen, Z.F. He, and X. Qi, A new control method for MIMO first order time delay non-square systems, Journal of Process Control, 21, 2011, 538–546.
  13. [13] C.I. Pop. C.M. Ionescu, and R. De Keyser, Time delay compensation for the secondary processes in a multivariable carbon isotope separation unit, Chemical Engineering Science, 80, 2012, 205–218.
  14. [14] C.I. Pop, R. De Keyser, and C.M. Ionescu, A simplified control method for multivariable stable nonsquare systems with multiple time delays, Proc. 19th Mediterranean Conference on Control and Automation, Corfu, Greece, 2011, 382–387.
  15. [15] R.A. Seshagiri and M. Chidambaram, Smith delay compensator for multivariable non-square system with multiple time delays, Computers and Chemical Engineering, 30(8), 2006, 1243–1255.
  16. [16] M. Sam Fadali, Digital control engineering: Analysis and design (Burlington, MA: Academic Press, 2009).
  17. [17] C.A. Monje, Y. Chen, B.M. Vinagre, D. Xue, and V. Feliu, Fractional-order systems and controls: fundamentals and applications (London, UK: Springer, 2010).
  18. [18] Y.Q. Chen and K.L. Moore, Discretization schemes for fractional-order differentiators and integrators, IEEE Transactions of Circuits and Systems – I: Fundamental Theory and Applications, 49(3), 2002, 363–367.

Important Links:

Go Back