ROBUST ADAPTIVE FUZZY SYSTEMS FOR INTEGRATED LATERAL AND LONGITUDINAL CONTROL OF HIGHWAY VEHICLES

Samaranath R. Ranatunga, Zhenwei Cao, Romesh Nagarajah, and Ahmad Rad

References

  1. [1] D.L. Hendricks, J.C. Fell, and M. Freedman, The relativefrequency of unsafe driving acts in serious traffic crashes,Department of Transportation, USA, DOT-HS-809-206, 2001.
  2. [2] L. Cai, A.B. Rad, and W.L. Chan, A genetic fuzzy controllerfor vehicle automatic steering control, IEEE Transactions onVehicular Technology, 56(2), 2007, 529–543.
  3. [3] R.T. O’Brien, P.A. Iglesias, and T.J. Urban, Vehicle lateralcontrol for automated highway systems, IEEE TransactionsControl Systems Technology, 4(3), 1996, 266–273.
  4. [4] J.E. Naranjo, C. Gonzalez, J. Reviejo, R. Garcia, and T. dePedro, Adaptive fuzzy control for inter-vehicle gap keeping,IEEE Transactions on Intelligent Transportation System, 4(3),2003, 132–142.
  5. [5] S. Shladover, C.A. Desoer, J.K. Hedrick, M. Tomizuka,J. Walrand, W.-B. Zhang, D.H. McMahon, H. Peng,S. Sheikholeslam, and N. McKeown, Automatic vehicle controldevelopments in the PATH program, IEEE Transactions onVehicular Technology, 40(1), 1991, 114–130.
  6. [6] M. Tomizuka and J.K. Hedrick, Automated vehicle control forIVHS systems, IFAC Conference, 1993, 109–112.
  7. [7] J.K. Hedrick, M. Tomizuka, and P. Varaiya, Control issues inautomated highway systems, IEEE Control Systems Magazine,14(6), 1994, 21–32.
  8. [8] E. Bakkar, L. Nyborg, and H.B. Pacejka, A new tyre modelwith an application in vehicle dynamic studies, SAE Transport:Journal of Passenger Cars, 98(890087), 1989.
  9. [9] E.H.M. Lim and J.K. Hedrick, Lateral and longitudinal vehiclecontrol coupling for automated vehicle operation, Proc. of theAmer. Cont. Conf., California, 1999, 3676–3680.
  10. [10] H. Pham, Combined lateral and longitudinal control of vehi-cles for the automated highway systems, Ph.D. dissertation,University of California, Berkeley, CA, 1996.
  11. [11] E.M. Lim, Lateral and longitudinal vehicle control couplingin the automated highway system, M.S. Thesis, University ofCalifornia, Berkeley, CA, 1998.188
  12. [12] H. Lee and M. Tomizuka, Coordinated longitudinal and lateralmotion control of vehicles for IVHS, Journal of DynamicSystems, Measurement, and Control, 123, 2001, 535–543.
  13. [13] S. Kumarawadu and T.T. Lee, Neuroadaptive combined lat-eral and longitudinal control of highway vehicles using RBFnetworks, IEEE Transactions on Intelligent TransportationSystem,7(4), 2006, 500–512.
  14. [14] K.R.S. Kodagoda, W.S. Wijesoma, and E.K. Teoh, Fuzzyspeed and steering control of an AGV, IEEE Transactions onControl Systems Technology, 10(1), 2002, 112–120.
  15. [15] A.Y. Maalej, D.A. Guenther, and J.R. Ellis, Experimentaldevelopment of tire force and moment model, InternationalJournal of Vehicular Design, 10, 1989, 34–50.
  16. [16] L.R. Ray, Nonlinear slip and tire force estimation for advancedvehicle controls, IEEE Transactions on Control Systems Tech-nology, 3, 1995, 117–124.
  17. [17] R. Saeks, C.J. Cox, J. Neidhoefer, P.R. Mays, and J.J. Murray,Adaptive control of a hybrid electric vehicle, IEEE Transactionson Intelligent Transportation System, 3(4), 2002, 213–234.
  18. [18] A. Rubaai, M.J. Castro-Sitrirche, and A.R. Ofoli, Designand implementation of parallel fuzzy PID controller for highperformance brushless motor drives, IEEE Transactions onIndustrial Application, 44(4), 2008, 1090–1098.
  19. [19] K. Zeng, N.Y. Zhang, and W.L. Xu, A comparative studyon sufficient conditions for Takagi–Sugeno fuzzy systems asuniversal approximators, IEEE Transactions on Fuzzy Systems,8(6), 2000, 773–780.
  20. [20] J.T. Spooner and K.M. Passino, Stable adaptive control usingfuzzy systems and neural networks, IEEE Transactions onFuzzy Systems, 4(3), 1996, 339–359.
  21. [21] M. Benyakhlef and L. Radouane, Adaptive fuzzy control of aclass of decentralized nonlinear systems and unknown dynam-ics, Control and Intelligent Systems, 35(1), 2007, 60–65.
  22. [22] D.B. Halima and M. Chtourou, On the adaptive fuzzy stabi-lization of unknown nonlinear systems, Control and IntelligentSystems, 35(4), 2007, 337.
  23. [23] A.F. Amer, E.A. Sallam, and W.M. Elawady, Adaptive fuzzysliding mode control using supervisory fuzzy control for 3 DOFplanar robot manipulators, Applied Soft Computing, 11, 2011,4943–4953.
  24. [24] S. Aloui, O. Pages, A.E. Hajjaji, A. Chaari, and Y. Koubaa,Improved fuzzy sliding mode control for a class of MIMOnonlinear uncertain and perturbed systems, Applied Soft Com-puting, 11, 2011, 820–826.
  25. [25] S.R. Ranatunga and S. Kumarawadu, Cooperatively controlledcollision evasive emergency manoeuvres, Journal of Controland Intelligent Systems, IASTED Publications, Canada, 36(4),2009, 330–339.
  26. [26] A. Boulkroune, M. Tadjine, M. M’saad, and M. Farza, Adaptivefuzzy observer for uncertain nonlinear systems, Control andIntelligent Systems, 39(3), 2011, 145–153.
  27. [27] S.R. Ranatunga, Z. Cao, R. Nagarajah, and A. Rad, Onadaptive fuzzy control for combined longitudinal and lateralvehicular control, Proc. of the 12th IASTED Int. Conf. onCtrl. and Appl., Banff, Canada, July, 2010.
  28. [28] H. Shraim, M. Ouladsine, L. Fridman, and M. Romero, Vehicleparameter estimation and stability enhancement using slidingmodes techniques, International Journal of Vehicular Design,48(3/4), 2008, 230–254.
  29. [29] P.A. Ioannou and A.-Z.D.H. Wuh, A time headway autonomousintelligent cruise controller: design and simulation (CaliforniaPATH, UCB-ITS-PWP-94-07, 1994).
  30. [30] S.B. Choi and P. Devlin, Throttle and brake combined controlfor intelligent vehicle highway systems, SAE, 951897, 1995.
  31. [31] R. Horowitz and P. Varaiya, Control design of an automatedhighway system (Berkeley: University of California, 2000).
  32. [32] K.M. Passino and S. Yurkovich, Fuzzy control (California:Addison-Wesley Longman, 1998).
  33. [33] L.-X. Wang, Stable adaptive fuzzy control of nonlinear systems,IEEE Transactions on Fuzzy Systems, 1(2), 1993, 146–155.
  34. [34] W.-Y. Wang, I-.H. Li, C-.P. Tsai, S-.F. Su, and S-.B. Hsu,Dynamic slip-ratio estimation and control of antilock brakingsystems using an observer-based direct adaptive fuzzy-neuralcontroller, IEEE Transactions on Industrial Electronics, 56(5),2009, 1746–1756.
  35. [35] H.E. Ho, Y.K. Wong, and A.B. Rad, Direct adaptive fuzzycontrol for a nonlinear helicopter system, International Journalof Aircraft Engineering and Aerospace Technology, 80(2), 2008,124–128.
  36. [36] W.-Y. Wang, Y.-G. Leu, and C.-C. Hsu, Robust adaptive fuzzy-neural control of nonlinear dynamical systems using generatedprojection update law and variable structure controller, IEEETransactions on Systems, Man and Cybernetics-Part B, 31(1),2001, 140–147.
  37. [37] R. Ketata, Y. Rezgui, and N. Derbel, Stability and robustnessof fuzzy adaptive control of nonlinear systems, Applied SoftComputing, 11, 2011, 166–178.
  38. [38] J.-S.R. Jang, C.-T. Sun, and E. Mizutani, Neuro-fuzzy andsoft computing (India: Pearson Education, 2005).
  39. [39] G. Feng, An approach to adaptive control of fuzzy dynamicsystems, IEEE Transactions on Fuzzy Systems, 10(2), 2002,268–275.
  40. [40] S. Chiu, Fuzzy model identification based on cluster estimation,Journal of Intelligent and Fuzzy Systems, 2(3), 1994, 267–277.
  41. [41] J.-S.R. Jang, ANFIS: adaptive-network-based fuzzy inferencesystems, IEEE Transactions on Systems, Man, and Cybernet-ics, 23, 1993, 665–685.
  42. [42] R. Johansson and A. Robertsson, The Yakubovick–Kalman–Popov lemma and stability analysis of dynamic output feed-back systems, International Journal of Robust and NonlinearControl, 16, 2006, 45–69.
  43. [43] K.S. Narendra and A.M. Annaswamy, Stable adaptive systems(NJ: Prentice-Hall, 1989).
  44. [44] W.M. Haddad and V. Chellaboina, Nonlinear dynamic systemsand control (Princeton and Oxford: Princeton UniversityPress, 2008).

Important Links:

Go Back