CALCULATION OF CONSTANT OUTPUT FEEDBACK MATRICES FOR POLE PLACEMENT BY A GAUSS–NEWTON METHOD

Matthias Franke and Klaus R¨benack

References

  1. [1] W. Wonham, On pole assignment in multi-input controllablelinear systems, IEEE Transactions on Automatic Control,12(6), 1967, 660–665.
  2. [2] T. Kailath, Linear systems. (Englewood Cliffs, NJ: PrenticeHall, 1980).
  3. [3] D.G. Luenberger, Observing the state of a linear system, IEEETransactions on Military Electronics, 8(2), 1964, 74–80.
  4. [4] S.D.G. Cumming, Design of observer of reduced dynamics,Electronics Letters, 5(10), 1969, 213–214.
  5. [5] M.-C. Pai, Dynamic output feedback sliding mode control foruncertain systems with state and input delays, Control andIntelligent Systems, 36(1), 2008, 92–97.
  6. [6] E.J. Davison, On pole assignment in linear systems withincomplete state feedback, IEEE Transactions on AutomaticControl, 15, 1970, 348–351.
  7. [7] H. Kimura, Pole assignment by output feedback: a longstandingopen problem, Proc. 33rd Conference on Decision and Control,1994, 2101–2105.
  8. [8] J. Rosenthal and J. Willems, Open problems in the area of poleplacement, in V.D. Blondel, E.D. Sontag, M. Vidyasagar, andJ.C. Willems (eds.), Open problems in mathematical systemsand control theory, communication and control engineeringseries (London: Springer-Verlag, 1998), 181–191.
  9. [9] A. Eremenko and A. Gabrielov, Pole placement by staticoutput feedback for generic linear systems, SIAM Journal ofControl and Optimization, 41, 2002, 303–312.
  10. [10] X. Wang, Pole placement by static output feedback, Journalof Mathematical Systems, Estimation, and Control, 2, 1992,205–218.
  11. [11] X.A. Wang, Grassmanian, central projection, and outputfeedback pole assignment of linear systems, IEEE Transactionson Automatic Control, 41, 1996, 786–794.
  12. [12] M. Franke, Eigenvalue assignment by static output feedback –on a new solvability condition and the computation of low gainfeedback matrices, International Journal of Control, 87(1),2014, 64–75.
  13. [13] S.-L. Chen, K.K. Tan, and S. Huang, Identification of coulombfriction-impeded systems with a triple-relay feedback appa-ratus, IEEE Transactions on Automatic Control, 20, 2012,726–737.
  14. [14] K. Yang and R. Orsi, Generalized pole placement via staticoutput feedback: a methodology based on projections, Auto-matica, 42, 2006, 2143–2150.
  15. [15] M. Fu, Pole placement via static output feedback is np-hard,IEEE Transactions on Automatic Control, 49, 2004, 855–857.
  16. [16] T.H. Lee, Q.G. Wang, and E.K. Koh, An iterative algorithmfor pole placement by output feedback, IEEE Transactions onAutomatic Control, 39, 1994, 565–568.
  17. [17] J. Leventides and N. Karcanias, Global asymptotic linearisationof the pole placement map: a closed-form solution for theconstant output feedback problem, Automatica, 31(9), 1995,1303–1309.
  18. [18] H.H. Rosenbrock, State-space and multivariable theory(London: Nelson, 1970).
  19. [19] D.G. Luenberger, Dynamic equations in descriptor form, IEEETransactions on Automatic Control, 29, 1977, 312–321.
  20. [20] D.G. Luenberger, Time-invariant descriptor systems, Auto-matica, 14, 1978, 473–480.
  21. [21] G.C. Verghese, B.C. Levy, and T. Kailath, A generalized state-space for singular systems, IEEE Transactions on AutomaticControl, 26(4), 1981, 811–830.
  22. [22] F.L. Lewis, A tutorial on the geometric analysis of linear time-invariant implicit systems, Automatica, 28(1), 1992, 119–137.
  23. [23] P. Losse and V. Mehrmann, Controllability and observabilityof second order descriptor systems, SIAM Journal of Controland Optimization, 47, 2008, 1351–1379.
  24. [24] J.C. Willems, The behavioral approach to open and intercon-nected systems, IEEE Control Systems Magazine, 27, 2007,46–99.
  25. [25] G.D. Forney, Minimal bases of rational vector spaces, withapplications to multivariable linear systems, SIAM Journal ofControl, 13(3), 1975, 493–520.
  26. [26] A. Bj¨orck, Numerical methods for least squares problems(Philadelphia: SIAM, 1996).
  27. [27] J. Nocedal and S.J. Wright, Numerical optimization (NewYork, NY: Springer, 1999).
  28. [28] A. Ben-Israel and T.N.E. Greville, Generalized inverses: theoryand applications (New York, NY: Wiley-Interscience, 1974).
  29. [29] S.L. Campbell and C.D. Meyer, Generalized inverses of lineartransformations (New York, NY: Dover Publications, 1979).
  30. [30] A. Griewank and A. Walther, Evaluating Derivatives: Prin-ciples and Techniques of Algorithmic Differentiation (SIAM,Philadelphia, 2nd edition, 2008).
  31. [31] A. Varga, A Schur method for pole assignment, IEEE Trans-actions on Automatic Control, 26, 1981, 111–129.
  32. [32] L.H. Keel, J.A. Fleming, and S.P. Bhattacharyya, Minimumnorm pole assignment via Sylvester’s equation, ContemperoryMathematics, 47, 1985, 265–272.
  33. [33] V. Mehrmann and H. Xu, An analysis of the pole placementproblem. II. The multi-input case, Electronic Transactions onNumerical Analysis, 5, 1997, 77–97.
  34. [34] K.J. Reinschke and O. Fritsche, Geometrischer Zugang zurPolzuweisbarkeit mittels konstanter Ausgangsr¨uckf¨uhrungen,Automatisierungstechnik, 52(9), 2004, 432–439.

Important Links:

Go Back