STABILITY OF PARTICULAR CLASS OF FRACTIONAL DIFFERENTIAL INCLUSION SYSTEMS WITH INPUT DELAY

Saeed Balochian and Mahsa Nazari

References

  1. [1] I. Podlubny, Fractional differential equations (San Diego, CA:Academic Press, 1999).
  2. [2] K. Oldham, Fractional calculus (New York, NY: AcademicPress, 1974).
  3. [3] J.T. Katsikadelis and N.G. Babouskos, Post-buckling anal-ysis of viscoelastic plates with fractional derivative models,Engineering Analysis with Boundary Elements, 34(12), 2010,1038–1048.
  4. [4] A.A. Jarbouh, Modelisation of the rheological behavior of vis-coelastic materials using the fractional derivatives and transfertechnique, Energy Procedia, 19(25), 2012, 212–225.
  5. [5] S.I. Jesus and J.A. Machado, Implementation of fractional-order electromagnetic potential through a genetic algorithm,Communications in Nonlinear Science and Numerical Simu-lation, 14(5), 2009, 1838–1843.
  6. [6] D. Baleanu and A.R.K. Golmankhaneh, On electromagneticfield in fractional space, Nonlinear Analysis: Real WorldApplications, 11(1), 2010, 288–292.
  7. [7] S. Das, Application of generalized fractional calculus in electri-cal circuit analysis and electromagnetics, Functional FractionalCalculus, Springer-Verlag Berlin Heidelberg, 2011, 387–436.
  8. [8] Z. Wang, X. Huang, and H. Shen, Control of an uncertainfractional order economic system via adaptive sliding mode,Neurocomputing, 83(10), 2012, 83–88.
  9. [9] R.L. Magin, Fractional calculus in bioengineering, CriticalReviews in Biomedical Engineering, 32(1), 2004, 1–104.
  10. [10] B.J. West, M. Bologna, and P. Grigolini, Physics of fractaloperators (New York, NY: Springer, 2003).
  11. [11] R. Hilfer, Fractional time evolution, Applications of FractionalCalculus in Physics, in R. Hilfer, (ed.), (Singapore, NewJersey, London and Hong Kong: World Scientific PublishingCompany, 2000).
  12. [12] X. Song, I. Tejado, and Y.Q. Chen, Stabilization for fractional-order networked control systems with input time-varyingdelays, IEEE Conf. on Advanced Mechatronic Systems(ICAMechS), Zhengzhou, 2011, 39–42.
  13. [13] J. Wei, The controllability of fractional control systems withcontrol delay, Computers and Mathematics with Applications,64(10), 2012, 3153–3159.
  14. [14] L. Wang, P. Cheng, and Y. Wang, Frequency domain subspaceidentification of commensurate fractional order input timedelay systems, International Journal of Control, Automation,and Systems, 9(2), 2011, 310–316.
  15. [15] K. Balachandran, Y. Zhou, and J. Kokila, Relative controlla-bility of fractional dynamical systems with distributed delaysin control, Computers and Mathematics with Applications,64(10), 2012, 3201–3209.
  16. [16] M. Heydari, H. Salarieh, and M. Behzad, Stochastic chaossynchronization using unscented Kalman–Bucy filter and slid-ing mode control, Mathematics and Computers in Simulation,81(9), 2011, 1770–1784.
  17. [17] X. Qingsong, Output-based discrete-time sliding mode controlfor a piezoelectrically actuated system, Nonlinear Dynamics,76(1), 2014, 551–559.
  18. [18] X. Qingsong, Digital sliding-mode control of piezoelectricmicropositioning system based on input–output model, IEEETransactions on Industrial Electronics, 61(10), 2014, 5517–5526. doi: 10.1109/TIE.2013.2290758.
  19. [19] X. Qingsong, Enhanced discrete-time sliding mode strategywith application to piezoelectric actuator control, IET ControlTheory Applications, 7(18), 2013, 2153–2163.
  20. [20] M. Basin, P.R. Ramirez, A. Ferrara, and D.C. Alvarez, Slid-ing mode optimal control for linear systems, Journal of theFranklin Institute, 394(4), 2012, 1350–1363.
  21. [21] B. Sencer, T. Mori, and E. Shamoto, Sliding mode controllerdesign for position synchronization of dual spindle servosystems, Procedia CIRP, 1(41), 2012, 250–254.
  22. [22] P.P. Biswas, R. Srivastava, S. Ray, and A.N. Samanta, Slidingmode control of quadruple tank process, Mechatronics, 19(4),2009, 548–561.
  23. [23] D.Y. Chen, Y.X. Liu, X.Y. Ma, and R.F. Zhang, Control ofa class of fractional-order chaotic systems via sliding mode,Nonlinear Dynamics, 67(1), 2012, 893–901.
  24. [24] Y. Tang, X. Zhang, D. Zhang, G. Zhao, and X. Guan,Fractional order sliding mode controller design for antilockbraking systems, Neurocomputing, 111(13), 2013, 122–130.
  25. [25] M.P. Aghababa, Robust stabilization and synchronization of aclass of fractional-order chaotic systems via a novel fractionalsliding mode controller, Communications in Nonlinear Scienceand Numerical Simulation, 17(6), 2012, 2670–2681.
  26. [26] H. Jiacai, L. Hongsheng, T. Fulin, and L. Di, Fractional ordersliding mode controller for the speed control of a permanentmagnet synchronous motor, 24th Chinese Control and DecisionConference (CCDC), Taiyuan, China, 2012, 1203–1208.
  27. [27] Z. Gao and X. Liao, Integral sliding mode control for fractional-order systems with mismatched uncertainties, NonlinearDynamics, 72(1–2), 2013, 27–35.
  28. [28] S. Balochian, A.K. Sedigh, and A. Zare, Stabilization ofmulti-input hybrid fractional order systems with state delay,ISA Transaction, 50(1), 2011, 21–27.
  29. [29] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory andapplications of fractional differential equations (Amsterdam,The Netherlands: Elsevier, 2006).
  30. [30] D. Matignon, Stability results for fractional differential equa-tions with applications to control processing, Proceedings ofthe IMACS-SMC, Lille, France, vol. 2, 1996, 963–968.
  31. [31] G.V. Smironov, Introduction to the theory of differentialinclusions (Providence, Rhode Islands, USA: American Math-ematical Society, 2002).
  32. [32] A. Si-Ammour, S. Djennoune, and M. Bettayeb, A slidingmode control for linear fractional systems with input and statedelays, Communications in Nonlinear Science and NumericalSimulation, 14(5), 2009, 2310–2318.

Important Links:

Go Back