STABILIZING CONTROL ALGORITHM FOR NONHOLONOMIC WHEELED MOBILE ROBOTS USING ADAPTIVE INTEGRAL SLIDING MODE

Waseem Abbasi, Fazal ur Rehman, Ibrahim Shah, and Arshad Rauf

References

  1. [1] E. Mohammadpour and M. Naraghi, Robust adaptive trackingand regulation of wheeled mobile robots violating kinematicconstraint, International Journal of Robotics and Automation,25(4), 2010, 323.
  2. [2] D. Gu and H. Hu, Receding horizon tracking control of wheeledmobile robots, IEEE Transactions on Control Systems Technology, 14(4), 2006, 743–749.
  3. [3] W. E. Dixon, Z.-P. Jiang, and D. M. Dawson, Global exponential setpoint control of wheeled mobile robots: A Lyapunovapproach, Automatica, 36(11), 2000, 1741–1746.
  4. [4] Y. Tian, N. Sidek, and N. Sarkar, Modeling and control of anonholonomic wheeled mobile robot with wheel slip dynamics,2009 IEEE Symp. on Computational Intelligence in Controland Automation, CICA 2009, IEEE, Nashville, TN, USA, 2009,7–14.
  5. [5] W. Abbasi, F. urRehman, and I. Shah, Backstepping basednonlinear adaptive control for the extended nonholonomicdouble integrator, Kybernetika, 53(4), 2017, 578–594.
  6. [6] K. Kherraz, M. Hamerlain, and N. Achour, Robust neuro-fuzzy sliding mode controller for a flexible robot manipulator,International Journal of Robotics and Automation, 30(1),2015, 40–49.
  7. [7] G. Xia, A. Zhao, H. Wu, and J. Liu, Adaptive robust outputfeedback trajectory tracking control for ships with input non-linearities, International Journal of Robotics and Automation,31(4), 2016, 341–353.
  8. [8] G. Oriolo, A. De Luca, and M. Vendittelli, WMR controlvia dynamic feedback linearization: Design, implementation,and experimental validation, IEEE Transactions on ControlSystems Technology, 10(6), 2002, 835–852.
  9. [9] M. Asif, M. J. Khan, and N. Cai, Adaptive sliding modedynamic controller with integrator in the loop for nonholonomic wheeled mobile robot trajectory tracking, InternationalJournal of Control, 87(5), 2014, 964–975.
  10. [10] R. W. Brockett, Asymptotic stability and feedback stabilization,Defense Technical Information Center Virginia, 1983.
  11. [11] A. Astolfi, Discontinuous control of nonholonomic systems,Systems & Control Letters, 27(1), 1996, 37–45.
  12. [12] P. Morin and C. Samson, Control of nonlinear chained systems:From the Routh-Hurwitz stability criterion to time-varyingexponential stabilizers, IEEE Transactions on Automatic Control, 45(1), 2000, 141–146.
  13. [13] S. Islam, X. P. Liu, and A. E. Saddik, Adaptive sliding modecontrol of unmanned four rotor flying vehicle, InternationalJournal of Robotics and Automation, 30(2), 2015, 140–148.
  14. [14] P. R. Ouyang, W. Yue, and V. Pano, Hybrid pd slidingmode control for robotic manipulators, International Journalof Robotics and Automation, 29(4), 2014, 387–395.
  15. [15] A. K. Khalaji and S. A. A. Moosavian, Switching control of atractor-trailer wheeled robot, International Journal of Roboticsand Automation, 30(2), 2015, 1–9.
  16. [16] A. Ferrara, L. Giacomini, and C. Vecchio, Control of nonholonomic systems with uncertainties via second-order slidingmodes, International Journal of Robust and Nonlinear Control,18(4–5), 2008, 515–528.
  17. [17] W. Abbasi and F. Rehman, Adaptive integral slidingmode stabilization of nonholonomic drift-free systems,Mathematical Problems in Engineering, 2016, 1–11. DOI:10.1155/2016/9617283
  18. [18] Q. Khan, A. I. Bhatti, S. Iqbal, and M. Iqbal, Dynamicintegral sliding mode for mimo uncertain nonlinear systems,International Journal of Control, Automation and Systems,9(1), 2011, 151–160.
  19. [19] Q. Khan, R. Akmeliawati, A. I. Bhatti, and M. A. Khan,Robust stabilization of underactuated nonlinear systems: Afast terminal sliding mode approach, ISA Transactions, 66,2017, 241–248.
  20. [20] M. Defoort, T. Floquet, A. Kokosy, and W. Perruquetti, Integral sliding mode control for trajectory tracking of a unicycletype mobile robot, Integrated Computer-Aided Engineering,13(3), 2006, 277–288.
  21. [21] F. Rehman, M. Ahmed, and N. Ahmed, Steering control algorithm for drift-free control systems using model decomposition:A wheeled mobile robot of type (1, 1) example, InternationalJournal of Robotics & Automation, 22(4), 2007, 313.
  22. [22] F.-u. Rehman, Feedback stabilization of nonholonomic controlsystems using model decomposition, Asian Journal of Control,7(3), 2005, 256–265.

Important Links:

Go Back