CAD-BASED VIEWPOINT ESTIMATION OF TEXTURE-LESS OBJECT FOR PURPOSIVE PERCEPTION USING DOMAIN ADAPTATION

Changjian Gu, Chaochen Gu, Kaijie Wu, Liangjun Zhang and Xinping Guan

References

  1. [1] Y. Liu, R. Xiong, and Y. Li, Robust and accurate multiple- camera pose estimation toward robotic applications, International Journal of Advanced Robotic Systems, 11, 2014, 357–369.
  2. [2] B. Browatzki, V. Tikhanoff, G. Metta, et al., Active object recognition on a humanoid robot, IEEE International Conference on Robotics and Automation, 44, 2012, 2021–2028.
  3. [3] A.A. Yusof, X. Tang, T. Kawamura, et al., Construction robot tele-operation with a VR-aided display: Workspace viewpoint manipulation effect, International Journal of Robotics and Automation, 26(4), 2011.
  4. [4] S. Chen, Y. Li, and N.M. Kwok, Active vision in robotic systems: A survey of recent developments, The International Journal of Robotics Research, 30(11), 2011, 1343–1377.
  5. [5] S. Thoduka, S. Pazekha, A. Moriarty, et al., RGB-D-based features for recognition of textureless Objects, RoboCup 2016: Robot World Cup XX, 2016, 294–305.
  6. [6] D. Dementhon and L.S. Davis, Exact and approximate solutions of the perspective-three-point problem, IEEE Transactions on Pattern Analysis & Machine Intelligence, 14(11), 1992, 1100–1105.
  7. [7] Z. Zhang, S. Zhang, and Q. Li, Robust and accurate vision- based pose estimation algorithm based on four coplanar feature points, Sensors, 16(12), 2016, 2173.
  8. [8] W. Yuan, Z. Cao, Y. Zhang, et al., A robot pose estimation approach based on object tracking in monitoring scenes, International Journal of Robotics and Automation, 32(3), 2017.
  9. [9] O. Russakovsky, J. Deng, H. Su, et al., ImageNet large scale visual recognition challenge, International Journal of Computer Vision, 115(3), 2015, 211–252.
  10. [10] A. Krizhevsky, I. Sutskever, and G.E. Hinton. ImageNet classification with deep convolutional neural networks, Communications of the ACM, 60(2), 2012, 84–90.
  11. [11] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014, https://arxiv.org/abs/1409.1556v6.
  12. [12] H. Su, C.R. Qi, Y. Li, et al., Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3d model views, Proc. IEEE Int. Conf. Computer Vision, 2015, 2686–2694.
  13. [13] Y. Wang, S. Li, M. Jia, et al., Viewpoint estimation for objects with convolutional neural network trained on synthetic images, Advances in multimedia information processing – PCM 2016, Vol. 1 (2016), 169–179.
  14. [14] W. Wohlkinger, A. Aldoma, R.B. Rusu, et al., 3DNet: Large-scale object class recognition from CAD models, Proc. IEEE Int. Conf. Robotics and Automation, 2012, 5384–5391.
  15. [15] C.R. Qi, H. Su, M. Nießner, et al., Volumetric and multi-view CNNs for object classification on 3d data, Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, 5648–5656.
  16. [16] E. Tzeng, J. Hoffman, N. Zhang, et al., Deep domain confusion: Maximizing for domain invariance, 2014, https://arxiv.org/abs/1412.3474v1.
  17. [17] J. Hoffman, B. Kulis, T. Darrell, et al., Discovering latent domains for multisource domain adaptation, Proc. IEEE European Con. on Computer Vision, Florence, Italy, 2012, 702–715.
  18. [18] S.J. Pan, I.W. Tsang, J.T. Kwok, et al., Domain adaptation via transfer component analysis, IEEE Transactions on Neural Networks, 22(2), 2011, 199–210.
  19. [19] C. Lu, H. Wang, C. Gu, et al., Viewpoint estimation for workpieces with deep transfer learning from cold to hot, International Conf. on Neural Information Proc., Springer, Cham, 2018 Dec 13, pp. 21–32.
  20. [20] K.M. Borgwardt, A. Gretton, M.J. Rasch, et al., Integrating structured biological data by kernel maximum mean discrepancy, Bioinformatics, 22(14), 2006, e49–e57.
  21. [21] J. Yosinski, J. Clune, Y. Bengio, et al., How transferable are features in deep neural networks, 2014, https://arxiv.org/abs/ 1411.1792v1.
  22. [22] .

Important Links:

Go Back