ROBUST NONLINEAR CONTROL AND ESTIMATION OF A PRRR ROBOT SYSTEM

Mohammad Al-Shabi, Khaled S. Hatamleh, Stephen A. Gadsden, Bassel Soudan and A. Elnady

References

  1. [1] A. Salehi, F. Piltan, M. Mirshekaran, M. Kazeminasab, and Z. Esmaeili, Comparative study between two important non-linear methodologies for continuum robot manipulator control, International Journal of Information Technology and Computer Science, 6(4), 2014, 66–80.
  2. [2] C. Mondragon and R. Fotouhi, Dynamics and motion control of a 6-DOF robot manipulator, ASME 2012 International Mechanical Engineering Congress and Exposition, Houston, TX, Vol. 4, 2012, 369–380.
  3. [3] S. Soltani and F. Piltan, Design artificial nonlinear controller based on computed torque like controller with tunable gain, World Applied Sciences Journal, 14(9), 2011, 1306–1312.
  4. [4] F. Piltan, S.T. Haghighi, N. Sulaiman, I. Nazari, and S. Siamak, Artificial control of PUMA robot manipulator: A-review of fuzzy inference engine and application to classical controller, International Journal of Robotic and Automation (IJRA), 2(5), 2011, 401–425.
  5. [5] K. Horspool, Cartesian-space adaptive control for dual-arm force control using industrial robots (University of New Mexico, 2003).
  6. [6] H. Ashrafiuon and J.V. Reddy, Model-based sliding mode control for a robot with SMA actuators, ASME 2005 International Design Engineering Technical Conf. and Computers and Information in Engineering Conf., Vol. 7: 29th Mechanisms and Robotics Conference, Parts A and B, Long Beach, CA, 2005, 615–621.
  7. [7] F. Piltan, S. Mehrara, R. Bayat, and S. Rahmdel, Design new control methodology of industrial robot manipulator: Sliding mode baseline methodology, International Journal of Hybrid Information Technology, 5(4), 2012, 41–54.
  8. [8] F. Piltan, A. Gavahian, N. Sulaiman, and M. Marhaban, Novel sliding mode controller for robot manipulator using FPGA, Journal of Advanced Science and Engineering Research, 1(1), 2011, 1–22.
  9. [9] T. Kailath, A view of three decades of linear filtering theory, IEEE Transactions on Information Theory, IT-20 (2), 1974, 146–181.
  10. [10] T. Trafina, Kalman filter application for localization improvement of multi-copter UAV, Master’s Project, Faculty of Electrical Engineering, Department of Computer Science, Czech Technical University in Prague, 2018.
  11. [11] D. Simon, Optimal state estimation: Kalman, H [infinity] and nonlinear approaches (Wiley-Interscience, 2006).
  12. [12] T. Bar-Shalom, X.R. Li, and T. Kirubarajan, Estimation with applications to tracking and navigation – Theory, algorithm and software (John Wiley & Sons, Inc., 2001).
  13. [13] D. Kim and C. Park, Application of Kalman filter for estimating a process disturbance in a building space, Sustainability, 9(10), 2017, 1868.
  14. [14] M. Grewal and A. Andrews, Kalman filtering: Theory and practice using Matlab, 2nd ed. (USA: John Wiley & Sons Inc., 2001).
  15. [15] V. Mahhoub and D. Mohammadi, A constrained total extended Kalman filter for integrated navigation, The Journal of Navigation, 71(4), 2018, 971–988.
  16. [16] K. Oh, T. Song, and H. Lee, An extended Kalman filter based object tracking algorithm for autonomous guided truck using 1-layer laser scanner, ASME-JSME 2018 Joint International Conf. on Information Storage and Proc. Systems and Micromechatronics for Information and Precision Equipment, San Francisco, CA, USA, August 29–30, 2018.
  17. [17] K. Xiong and C. Wei, Adaptive iterated extended KALMAN filter for relative spacecraft attitude and position estimation, Asian Journal of Control, 20(4), 2017, 1595–1610.
  18. [18] X. Hu, M. Bao, X. Zhang, L. Guan, and Y. Hu, Generalized Iterated Kalman filter and its performance evaluation, IEEE Transactions on Signal Processing, 63(12), 2015, 3204–3217.
  19. [19] J. Garc´ıa-Pintado and A. Paul, Evaluation of iterative Kalman smoother schemes for multi-decadal past climate analysis with comprehensive Earth system models, Geoscientific Model Development, 11, 2018, 5051–5084.
  20. [20] S. Berber, G.R. Hirani, and M. Ho, Measurement and mean power estimation in indoor wireless channel based on higher order Kalman filtering, IEEE Transactions on Instrumentation and Measurement, 63(12), 2014, 2771–2778.
  21. [21] F. Fahimi, S. Kotike, and R. Rameshbabu, A self-levelling higher order sliding mode controller for a leg-wheeled robot with experiments, Mechatronic Systems and Control, 46(3), 2018.
  22. [22] N. Nguyen, H. Yang, and S. Kim, HOKF: High order Kalman filter for epilepsy forecasting modeling, Biosystems, 158, 2017, 57–67.
  23. [23] F. Van Der Heidan, R.P.W. Duin, D. de Ridder, and D.M.J. Tax, Classification, parameter estimation and state estimation – An engineering approach using MATLAB (England: John Wiley & Sons, Ltd., 2004).
  24. [24] J. Dunik, O. Straka, M. Simandl, and E. Blasch, Sigma-point set rotation for derivative-free filters in target tracking applications, Journal of Advances in Information Fusion, 11(1), 2016, 91–109.
  25. [25] B. Ritter, E. Mora, T. Schlicht, A. Schild, and U. Konigorski, Adaptive sigma-point Kalman filtering for wind turbine state and process noise estimation, Journal of Physics: Conference Series, 1037, 2018.
  26. [26] G. Liu and G. Tian, Square-root sigma-point information consensus filters for distributed nonlinear estimation, Sensors (Basel), 17(4), 2017.
  27. [27] H. Yan, B. Gao, S. Gao, L. Xue, Y. Zhong, C. Gu, and R.N. Jazar, Robust adaptive Gaussian mixture sigma point particle filter, Journal of Robotics and Automation, 1(1), 2016, 1–7.
  28. [28] A. Martin and M. Emami, Just-in-time cooperative simultaneous localization and mapping: a robust particle filter approach, International Journal of Robotics and Automation, 29(2), 2014, 119–132.
  29. [29] U. Al-Saggaf, M. Bettayeb, and S. Djennoune, Super-twisting algorithm-based sliding-mode observer for synchronization of nonlinear incommensurate fractional-order chaotic systems subject to unknown inputs, Arabian Journal for Science and Engineering, 42(7), 2017, 3065–3075.
  30. [30] K. Zhao, P. Li, C. Zhang, X. Li, J. He, and Y. Lin, Sliding mode observer-based current sensor fault reconstruction and unknown load disturbance estimation for PMSM driven system, Sensors, 17(12), 2017.
  31. [31] R. Li and Q. Zhang, Robust H∞ sliding mode observer design for a class of Takagi–Sugeno fuzzy descriptor systems with time-varying delay. Applied Mathematics and Computation, 337(C), 2018, 158–178.
  32. [32] Q. Le, H. Kang, and T. Le, An adaptive controller with an orthogonal neural network and a third order sliding mode observer for robot manipulators, International Journal of Mechanical Engineering and Robotics Research, 7(2), 2018, 169–173.
  33. [33] M. Venkatesan and V. Ravi, Sliding mode observer based sliding mode controller for interacting nonlinear system, Second International Conf. on Current Trends In Engineering and Technology – ICCTET 2014, IEEE, India, 2014.
  34. [34] C. Yue and H. Chen, Adaptive sliding-mode tracking control for an uncertain nonlinear SISO servo system with a disturbance observer, Journal of Shanghai Jiaotong University (Science), 23(2), 2018, 376–383.
  35. [35] P. Chawengkrittayanont and C. Pukdeboon, Continuous higher order sliding mode observers for a class of uncertain nonlinear systems, Transactions of the Institute of Measurement and Control, 2018, DOI: 10.1177/0142331218769130.
  36. [36] J. He, L. Mi, J. Liu, X. Cheng, Z. Lin, and C. Zhang, Ring coupling-based collaborative fault-tolerant control for multirobot actuator fault, International Journal of Robotics and Automation, 33(6), 2018.
  37. [37] Z. Chu, D. Zhu, and S. Yang, Adaptive terminal sliding mode based sensorless speed control for underwater thruster, International Journal of Robotics and Automation, 31(3), 2016.
  38. [38] H.H. Afshari, S.A. Gadsden, and S. Habibi, Robust fault diagnosis of an electrohydrostatic actuator using the novel optimal second-order SVSF and IMM strategy, International Journal of Fluid Power, 15(3), 2014, 181–196.
  39. [39] S.A. Gadsden, Smooth variable structure filtering: Theory and applications, PhD Thesis, Hamilton, ON, Canada, 2011.
  40. [40] S.A. Gadsden and A. Lee, Advances of the smooth variable structure filter: Square-root and two-pass formulations, Journal of Applied Remote Sensing, 11(1), 2017.
  41. [41] H.H. Afshari, S.A. Gadsden, and S. Habibi, Gaussian filters for parameter and state estimation: a general review and recent trends, Signal Processing, 135, 2017, 218–238.
  42. [42] S.A. Gadsden, S. Habibi, and T. Kirubarajan, Kalman and smooth variable structure filters for robust estimation, IEEE Transactions on Aerospace and Electronic Systems, 50(2), 2014, 1038–1050.
  43. [43] S.A. Gadsden and S. Habibi, Novel model-based estimators for the purposes of fault detection and diagnosis, IEEE/ASME Transactions on Mechatronics, 18(4), 2013, 1237–1249.
  44. [44] S.A. Gadsden and S. Habibi, A new robust filtering strategy for linear systems, ASME Journal of Dynamic Systems, Measurement, and Control, 135(1), 2013.
  45. [45] J. Goodman, J. Kim, A.S. Lee, S.A. Gadsden, and M. Al-Shabi, A variable structure-based estimation strategy applied to an RRR robot system, Journal of Robotics, Networking, and Artificial Life, 4(2), 2017, 142–145.
  46. [46] S.A. Gadsden, M. Al-Shabi, and S. Habibi, Estimation strategies for the condition monitoring of a battery system in a hybrid electric vehicle, ISRN Signal Processing, 2011. http://dx.doi.org/10.5402/2011/120351
  47. [47] S.A. Gadsden, M. Al-Shabi, I. Arasaratnam, and S. Habibi, Estimation of an electrohydrostatic actuator using a combined cubature Kalman and smooth variable structure filter, International Mechanical Engineering Congress and Exposition (IMECE), American Society of Mechanical Engineers, Vancouver, British Columbia, 2017.
  48. [48] M. Al-Shabi, A. Cataford, S.A. Gadsden, Quadrature Kalman filters with applications to robotic manipulators, 2017 IEEE International Symposium on Robotics and Intelligent Sensors, Ottawa, Ontario, 2018.
  49. [49] M. Al-Shabi and S.R. Habibi, New novel time-varying, stable and robust smoothing boundary layer width for the smooth variable structure filter, International Symposium on Mechatronics and its Applications (ISMA’13), Amman-Jordan, 2013.
  50. [50] S.A. Gadsden, M. Al-Shabi, I. Arasaratnam, and S. Habibi, Combined cubature Kalman and smooth variable structure filtering: A robust nonlinear estimation strategy, Signal Processing, 96(B), 2014, 290–299.
  51. [51] M. Al-Shabi, K. Hatamleh, S. AlShaer, I. Salameh, and S.A. Gadsden, A comprehensive comparison of sigma-point Kalman filters applied on a complex maneuvering road, 2016 SPIE Signal Processing, Sensor/Information Fusion, and Target Recognition XXV, Baltimore, MD, 2016.
  52. [52] J. Craig, Introduction to robotics mechanics and control (Upper Saddle River, NJ: Pearson Prentice Hall, 2005). 643
  53. [53] M. Al-Shabi and K. Hatamleh, The unscented smooth variable structure filter application into a robotic arm, ASME 2014 International Mechanical Engineering Congress and Exposition, Vol. 4B: Dynamics, Vibration, and Control, Montreal, QC, Canada, November 14–20, 2014.
  54. [54] K. Hatamleh, M. AlShabi, Q. Khasawneh, and M. Abo Al-Asal, Application of SMC and NLFC into a PRRR robotic arm, ASME 2014 International Mechanical Engineering Congress and Exposition, Volume 4A: Dynamics, Vibration, and Control, Montreal, QC, Canada, November 14–20, 2014.
  55. [55] M. Al-Shabi, M. Bani-Yonis, and K. Hatamleh, The sigma-point central difference smooth variable structure filter application into a robotic arm, 12th International Multi-Conf. on Systems, Signals & Devices (SSD), Mahdia, Tunisia, December 7, 2015.
  56. [56] M. Al-Shabi, Sigma-point filters in robotic applications, Intelligent Control and Automation, 6, 2015, 168–183.
  57. [57] M. Al-Shabi, Sigma-point smooth variable structure filters applications into robotic arm, Proc. 7th International Conf. on Modeling, Simulation, and Applied Optimization (ICMSAO), Sharjah, United Arab Emirates, April 4–6, 2017.
  58. [58] V. Utkin, J. Guldner, and J. Shi, Sliding mode control in electromechanical systems (Philadelphia, PA: Taylor & Francis Inc., 1999).
  59. [59] U. Ansari and A. Bajodah, Adaptive fuzzy sliding mode control: Application to satellite launch vehicle’s attitude control, Mechatronic Systems and Control, 46(1), 2018.
  60. [60] W. Zhang, Z. Liang, X. Sun, Y. Teng, X. Song, and Z. Yan, Path following control for an under-actuated UUV based on adaptive sliding mode control, International Journal of Robotics and Automation, 32(5), 2017.
  61. [61] S. Zhu, Q. Chen, X. Wang and S. Liu, Dynamic modelling using screw theory and nonlinear sliding mode control of serial robot, International Journal of Robotics and Automation, 31(1), 2016.
  62. [62] W. Perruquetti and J. Barbot, Sliding mode control in engineering (New York, NY: Marcel Dekker, Inc., 2002).
  63. [63] M. Al-Shabi, The general Toeplitz/observability smooth variable structure filter, PhD Thesis Dissertation, McMaster University, 2011.
  64. [64] M. Al-Shabi and S. Habibi, New novel time-varying, stable and robust smoothing boundary layer width for the smooth variable structure filter, International Symposium on Mechatronics and its Applications (ISMA’13), Amman-Jordan, 2013.
  65. [65] M. Al-Shabi and S.A. Gadsden, Kalman filtering strategies utilizing the chattering effects of the smooth variable structure filter, Signal Processing, 93(2), 2013, 420–4311.
  66. [66] S.A. Gadsden and S. Habibi, A new form of the smooth variable structure filter with a covariance derivation, Proc. 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 2010, 7389–7394.
  67. [67] S.A. Gadsden, M. El Sayed, and S. Habibi, Derivation of an optimal boundary layer width for the smooth variable structure filter 2011 ASME/IEEE American Control Conference (ACC), San Francisco, CA, 2011.

Important Links:

Go Back