STATE-FEEDBACK-BASED FRACTIONAL-ORDER CONTROL APPROXIMATION FOR A ROTARY FLEXIBLE JOINT SYSTEM, 256-263.

Maher H. Al-Sereihy, Ibrahim M. Mehedi, Ubaid M. Al-Saggaf, and Maamar Bettayeb

References

  1. [1] S. Saitou, M. Deng, A. Inoue, and C. Jiang, Vibration control of a flexible arm experimental system with hysteresis of piezoelectric actuator, International Journal of Innovative Computing, Information and Control, 6, 2010, 2965–2975.
  2. [2] M.A. Auwalu, Z. Mohamed, M. Mustapha, and A. Bature, Vibration and tip deflection control of a single link flexible manipulator, International Journal of Instrumentation and Control Systems, 3, 2013, 17–27.
  3. [3] B. Chen, J. Huang, and J.C. Ji, Control of flexible single-link manipulators having Duffing oscillator dynamics, Mechanical Systems and Signal Processing, 121, 2019, 44–57.
  4. [4] A.-C. Huang and Y.-C. Chen, Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties, IEEE Transactions on Control Systems Technology, 12, 2004, 770–775.
  5. [5] Y. Li, S. Tong, and T. Li, Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstepping, Nonlinear Analysis. Real World Applications, 14, 2013, 483–494.
  6. [6] U.M. Al-Saggaf, I.M. Mehedi, R. Mansouri, and M. Bettayeb, State feedback with fractional integral control design based on the Bode’s ideal transfer function, International Journal of Systems Science, 47, 2016, 149–161.
  7. [7] I.M. Mehedi, U.M. Al-Saggaf, R. Mansouri and M. Bettayeb, Stabilization of a double inverted rotary pendulum through fractional order integral control scheme, International Journal of Advanced Robotic Systems, 16(4), 2019.
  8. [8] I.M. Mehedi, Full state-feedback solution for a flywheel based satellite energy and attitude control scheme, Journal of Vibroengineering, 19(5), 2017, 3522–3532. 262
  9. [9] I.M. Mehedi, U.M. Al-Saggaf, R. Mansouri and M. Bettayeb, Two degrees of freedom fractional controller design: Application to the ball and beam system, Measurement, 135, 2019, 13–22.
  10. [10] I.M. Mehedi, State feedback based fractional order control scheme for linear servo cart system, Journal of Vibroengineering, 20(1), 2018, 782–792.
  11. [11] M. Bettayeb, R. Mansouri, U. Al-Saggaf, and I.M. Mehedi, Smith predictor based fractional-order-filter PID controllers design for long time delay systems, Asian Journal of Control, 19(2), 2016, 587–598.
  12. [12] U.M. Al-Saggaf, I.M. Mehedi, R. Mansouri, and M. Bettayeb, Rotary flexible joint control by fractional order controllers, International Journal of Control, Automation and Systems, 15(6), 2017, 2561–2569.
  13. [13] P. Shah and S. Agashe, Review of fractional PID controller, Mechatronics, 38, 2016, 29–41.
  14. [14] Z. Li, L. Liu, S. Dehghan, Y. Chen, and D. Xue, A review and evaluation of numerical tools for fractional calculus and fractional order controls, International Journal of Control, 90, 2017, 1165–1181.
  15. [15] M.I. Alomoush, Fractional calculus-based optimal controllers of automatic voltage regulator in power system, Control and Intelligent Systems, 38(I), 2010, 40–48.
  16. [16] D. Xue and Y. Chen, Modeling, analysis and design of control systems in MATLAB and Simulink (Singapore: World Scientific, 2014).
  17. [17] D.P.M.O. Valerio and J.S. da Costa, Ninteger: A non-integer control toolbox for Matlab, International Conf. on 1st IFAC Workshop on Fractional Differentiation and its Applications, Bordeaux, France, 2004, 208–213.
  18. [18] The CRONE Team, The CRONE toolbox homepage, http://www.imsbordeaux.fr/CRONE/toolbox (2014).
  19. [19] A. Tepljakov, E. Petlenkov, and J. Belikov, FOMCON: Fractional-order modeling and control toolbox for MATLAB, International Conf. on Proc. of the 18th International Conf. Mixed Design of Integrated Circuits and Systems – MIXDES 2011, IEEE, Gliwice, Poland, 2011, 684–689.
  20. [20] Quanser Inc, Rotary flexible joint-workbook, http://www.quanser.com/products/rotaryflexiblejoint (2011).
  21. [21] A. Djouambi, A. Charef, and A. Voda, Fractional order controller based on Bode’s ideal transfer function, Control and Intelligent Systems, 38, 2010, 64–73.
  22. [22] D.P.M.O. Valerio, Ninteger v. 2.3 fractional control toolbox for MATLAB, user manual, Universudade Techica de Lisboa, Lisboa, Portugal, 2005.
  23. [23] A. Tepljakov, E. Petlenkov, and J. Belikov, FOMCON toolbox, http://www.fomcon.net (2011).
  24. [24] Y. Chen, I. Petras, and D. Xue, Fractional order control – A tutorial, International Conf. on 2009 American Control Conf., IEEE, St. Louis, MO, 2009, 1397–1411.
  25. [25] A. Tepljakov, E. Petlenkov, and J. Belikov, FOMCON: A MATLAB toolbox for fractional-order system identification and control, International Journal of Microelectronics and Computer Science, 2, 2011, 51–62.

Important Links:

Go Back