LSNet: IDENTIFICATION OF COPPER AND STAINLESS STEEL USING LASER SPECKLE IMAGING IN DISMAL SURROUNDINGS, 256-263.

Yuri Lu,∗ Menghan Hu,∗,∗∗ Guangtao Zhai,∗∗ and Simon X. Yang∗∗∗

References

  1. [1] K.S. Younis, W. Ayyad, and A. Al-Ajlony, Embedded systemimplementation for material recognition using deep learning,2017 IEEE Jordan Conf. on Applied Electrical Engineeringand Computing Technologies (AEECT), Aqaba, Jordan, 2017,1–6.
  2. [2] S. Baglio, L. Cantelli, F. Giusa, and G. Muscato, Intelligentprodder: Implementation of measurement methodologies formaterial recognition and classification with humanitarian dem-ining applications, IEEE Transactions on Instrumentation andMeasurement, 4(8), 2015, 2217–2226.
  3. [3] M. Brandao, Y.M. Shiguematsu, K. Hashimoto, and A. Takan-ishi, Material recognition CNNS and hierarchical planning forbiped robot locomotion on slippery terrain, 2016 IEEE-RAS16th Int. Conf. on Humanoid Robots (Humanoids), Cancun,Mexico, 2016, 81–88.
  4. [4] J. DeGol, M. Golparvar-Fard, and D. Hoiem, Geometry-informed material recognition, Proc. of the IEEE Conf. onComputer Vision and Pattern Recognition, Las Vegas, Nevada,2016, 1554–1562.
  5. [5] C. Zhao, L. Sun, and R. Stolkin, A fully end-to-end deeplearning approach for real-time simultaneous 3d reconstructionand material recognition, 2017 18th Int. Conf. on AdvancedRobotics (ICAR), Hong Kong, China, 2017, 75–82.
  6. [6] Z. Xu, Q. Wang, D. Li, M. Hu, N. Yao, and G. Zhai, Estimatingdeparture time using thermal camera and heat traces trackingtechnique, Sensors, 20(3), 2020, 782.
  7. [7] P.S. Vemulapalli, A.K. Rachuri, H. Patel, and K.P. Upla, Multi-object detection in night time, Asian Journal For Convergencein Technology, 5(3), 2020, 1–7.
  8. [8] M. Hu and Q. Li, An efficient model transfer approach tosuppress biological variation in elastic modulus and firmnessregression models using hyperspectral data, Infrared Physics& Technology, 99, 2019, 140–151.
  9. [9] L. Yan, L. Pang, H. Wang, and J. Xiao, Recognition of dif-ferent Longjing fresh tea varieties using hyperspectral imag-ing technology and chemometrics, Journal of Food ProcessEngineering, 43, 2020, e13378.
  10. [10] E. Bonah, X. Huang, R. Yi, J. H. Aheto, and S. Yu, Vis-NIR hyperspectral imaging for the classification of bacterialfoodborne pathogens based on pixel-wise analysis and a novelcars-pso-svm model, Infrared Physics & Technology, 105, 2020,103220.
  11. [11] A. Zdunek, A. Adamiak, P.M. Pieczywek, and A. Kurenda,The biospeckle method for the investigation of agriculturalcrops: A review, Optics and Lasers in Engineering, 52, 2014,276–285.
  12. [12] N. Ozana, I. Margalith, Y. Beiderman, et al., Demonstrationof a remote optical measurement configuration that correlateswith breathing, heart rate, pulse pressure, blood coagulation,and blood oxygenation, Proceedings of the IEEE, 103(2), 2015,248–262.
  13. [13] B. Mandracchia, J. Palpacuer, F. Nazzaro, et al., Biospeckledecorrelation quantifies the performance of alginate-encapsulated probiotic bacteria, IEEE Journal of SelectedTopics in Quantum Electronics, 25(1), 2018, 1–6.
  14. [14] Y. Zhang, H.C. Koydemir, M.M. Shimogawa, et al., Motility-based label-free detection of parasites in bodily fluids usingholographic speckle analysis and deep learning, Light: Science& Applications, 7(1), 2018, 1–18.
  15. [15] R. Pandiselvam, V. Mayookha, A. Kothakota, S. Ramesh,R. Thirumdas, and P. Juvvi, Biospeckle laser technique–a novelnon-destructive approach for food quality and safety detection,Trends in Food Science & Technology, 97, 2020, 1–13.
  16. [16] M. Kim, D.-G. Nam, P. Im, J.-S. Choe, and A.-J. Choi,Optimal conditions for the encapsulation of weissella cibariajw15 using alginate and chicory root and evaluation of capsulestability in a simulated gastrointestinal system, Journal ofFood Science, 85(2), 2020, 394–403.
  17. [17] S. Muench, M. Roellig, U. Cikalova, B. Bendjus, L. Chen, andS. Sudip, A laser speckle photometry based non-destructivemethod for measuring stress conditions in direct-copper-bondedceramics for power electronic application, 2017 18th Int. Conf.on Thermal, Mechanical and Multi-Physics Simulation and Ex-periments in Microelectronics and Microsystems (EuroSimE),Dresden, Germany, 2017, 1–8.
  18. [18] L. Chen, U. Cikalova, S. Muench, M. Roellig, and B. Bendjus,Stress characterization of ceramic substrates by laser specklephotometry, 2019 42nd Int. Spring Seminar on ElectronicsTechnology (ISSE), Wroclaw, Poland, 2019, 1–6.
  19. [19] A.L. Dai Pra, L.I. Passoni, and H. Rabal, Evaluation of laserdynamic speckle signals applying granular computing, SignalProcessing, 89(3), 2009, 266–274.
  20. [20] P.D. Minz and A. Nirala, Intensity based algorithms forbiospeckle analysis, Optik, 125(14), 2014, 3633–3636.
  21. [21] L. Mart´ı-L´opez, H. Cabrera, R. Mart´ınez-Celorio, andR. Gonz´alez-Pe˜na, Temporal difference method for processingdynamic speckle patterns, Optics Communications, 283(24),2010, 4972–4977.
  22. [22] N. Budini, C. Mulone, F. Vincitorio, C. Freyre, A. L´opez, andA. Ramil, Two simple methods for overall determination ofmobility in dynamic speckle patterns, Optik, 124(24), 2013,6565–6569.
  23. [23] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature,521(7553), 2015, 436–444.
  24. [24] L. Deng and D. Yu, Deep learning: methods and applications,Foundations and Trends r in Signal Processing, 7(3–4), 2014,197–387.
  25. [25] A. Singla, L. Yuan, and T. Ebrahimi, Food/non-food im-age classification and food categorization using pre-trainedGoogLeNet model, Proc. of the 2nd Int. Workshop on Multime-dia Assisted Dietary Management, Amsterdam, Netherlands,2016, 3–11.
  26. [26] M. Al-Qizwini, I. Barjasteh, H. Al-Qassab, and H. Radha, Deeplearning algorithm for autonomous driving using GoogLeNet,2017 IEEE Intelligent Vehicles Sympos. (IV), Los Angeles,California USA, 2017, 89–96.
  27. [27] R. Lan, L. Sun, Z. Liu, et al., Cascading and enhancedresidual networks for accurate single-image super-resolution,IEEE Transactions on Cybernetics, 2020, 1–11. DOI:10.1109/TCYB.2019.2952710.
  28. [28] L. Liu, W. Ouyang, X. Wang, et al., Deep learning for genericobject detection: A survey, International Journal of ComputerVision, 128(2), 2020, 261–318.
  29. [29] J.D. Briers and S. Webster, Laser speckle contrast analysis(lasca): a nonscanning, full-field technique for monitoringcapillary blood flow, Journal of Biomedical Optics, 1(2), 1996,174–180.
  30. [30] T.S. Lee, Image representation using 2d Gabor wavelets, IEEETransactions on pattern analysis and machine intelligence,18(10), 1996, 959–971.262
  31. [31] C. Szegedy, W. Liu, Y. Jia, et al., Going deeper with con-volutions, Proc. of the IEEE Conf. on Computer Vision andPattern Recognition, Boston, Massachusetts USA, 2015, 1–9.
  32. [32] M. Lin, Q. Chen, and S. Yan, Network in network,arXiv:1312.4400, 2013.
  33. [33] S. Ioffe and C. Szegedy, Batch normalization: Acceleratingdeep network training by reducing internal covariate shift,arXiv:1502.03167, 2015.
  34. [34] C. Szegedy, S. Ioffe, V. Vanhoucke, and A.A. Alemi, Inception-v4, inception-resnet and the impact of residual connections onlearning, Thirty-first AAAI Conf. on Artificial Intelligence,San Francisco, California USA, 2017.
  35. [35] Z. Li, H. Yan, H. Zhang, X. Zhan, and C. Huang, Improvedinequality-based functions approach for stability analysis oftime delay system, Automatica, 108, 2019, 108416.
  36. [36] Z. Li, H. Yan, H. Zhang, J. Sun, and H.-K. Lam, Stabilityand stabilization with additive freedom for delayed Takagi–Sugeno fuzzy systems by intermediary-polynomial-based func-tions, IEEE Transactions on Fuzzy Systems, 28(4), 2019,692–705.
  37. [37] M. Hu, Y. Chen, G. Zhai, Z. Gao, and L. Fan, An overviewof assistive devices for blind and visually impaired people,International Journal of Robotics and Automation, 34(5), 2019,580–598.

Important Links:

Go Back