Rajmeet Singh∗ and Tarun K. Bera∗
[1] J.M. Hollerbach, A recursive lagrangian formulation of manip-ulator dynamics and a comparative study of dynamics formu-lation complexity, IEEE Transactions on Systems, Man, andCybernetics, 10, 1980, 730–736. [2] W.W. Armstrong, Recursive solution of the equations of motionof an n-link manipulator, Proceeding of the fifth World Congresson the Theory of Machines and Mechanisms, 1979, Montral,Canada, 1342–1346. [3] A.K. Banerjee, Block-diagonal equations for multi-bodyelasto dynamics with geometric stiffness and constraints,Journal of Guidance, Control, and Dynamics, 16, 1993,1092–1100. [4] J. Bae and E.J Haug, A recursive formulation for constrainedmechanical system dynamics: Part I. Open loop syst, Mecha-nisms, Structures, and Machines, 12, 1987, 359–382. [5] W. Borutzky, Bond Graphs: A Methodology for ModellingMultidisciplinary Dynamic Systems (SCS Publishing House,Erlangen, 2004). [6] A. Mukherjee, R. Karmakar, AK Samantaray, Bond Graphin Modeling, Simulation and Fault Identification, CRC Press,Boca Raton, 2006. [7] A.M. Bos, Modelling Multibody Systems in terms of Multi-bond Graphs, with Application to a Motorcycle, Ph.D. Thesis(Twente University, Enschede, Netherlands, 1987). [8] B.B. Ould, K. Medjaher, M. Bayart, and A.K. Samantaray,Fault detection and isolation of smart actuators using bondgraphs and external models, Control Engineering Practice,13(2), 2005, 159–175. [9] T.K Bera, K. Bhattacharya, and A.K. Samantaray, Bond graphmodel based evaluation of a sliding mode controller for com-bined regenerative and antilock braking system, Proceedings ofthe Institution of Mechanical Engineers, Part I, 225(7), 2011,918–934. [10] R. Singh, M. Singh, and T.K. Bera, Model reduction invehicle dynamic systems, International Journal of Modellingand Simulation, 37(2), 2017, 1–16. [11] A.P. Moon and K.K. Jajuiwar, Design of adaptive fuzzy track-ing controller for Autonomous navigation system, InternationalJournal of Recent Trends in Engineering & Research, 2(2),2016, 268–275. [12] G. Yu, K.Y. Bai, and M.C. Chen, Applications of Taguchimethod to fuzzy control for path tracking of a wheeled mo-bilerobot, Proceedings of the 17th National Conference onFuzzy Theory and its Applications, Kaohsiung, Taiwan, 2009,857–862. [13] W.L. Xu and S.K. Tso, Sensor-based fuzzy reactive navigationof a mobile robot through local target switching, IEEE Trans-actions on Systems Man and Cybernetics Part C (Applicationsand Reviews), 29(3), 1999, 85–91. [14] C.C. Wong, C.L. Hwang, Y.Y. Hu, and C.T. Cheng, Designand implementation of vision-based fuzzy obstacle avoidancemethod on humanoid robot, International Journal of FuzzySystems, 13(1), 2011, 45–54. [15] C. Yuxiao, P. Huei, and G. Jessy, Obstacle avoidance forlow-speed autonomous vehicles with barrier function, IEEETransactions on Control Systems Technology, 26(1), 2018,194–206. [16] Y. Zhao, X. Chai, G. Feng, and Q. Chenkun, Obstacleavoidance and motion planning scheme for a hexapod robotOctopus-III, Robotics and Autonomous Systems, 103, 2018,199–212. [17] W. Wang, M. Zhu, and X. Wang, An improved artificialpotential field method of trajectory planning and obstacleavoidance for redundant manipulators, International Journalof Advanced Robotic Systems, 15(5), 2018, 1–13. [18] Y. Yingying,W. Zhiyong, C. Zhiqiang, L. Pang, R. Liang,and Z. Chao, A laser-based multi-robot collision avoidance290approach in unknown environments, International Journal ofAdvanced Robotic Systems, 15(1), 2018, 1–10. [19] V. Ganapathy, S.C. Yun, and J. Ng, Fuzzy and neural con-trollers for acute obstacle avoidance in mobile robot navi-gation, IEEE/ASME International Conference on AdvancedIntelligent Mechatronics, Singapore, 2009, 1236–1241. [20] X. Li, X. Huang, and M. Wang, Robot map building fromsonar sensors and DSmT, Information & Security, 20, 2006,104–121. [21] M.P. Imthiyas, Indoor environment mobile robot localization,International Journal of Computer Science Engineering, 2(3),2010, 714–719. [22] D. Hahnel, D. Schulz, and W. Burgard, Map building withmobile robots in populated environments, IEEE/RSJ, Interna-tional Conference on Intelligent Robots and Systems (IROS),Lausanne, Switzerland, 2002, 496–501. [23] J.A. Perez, J. Castellanos, M. Montiel, J. Neira, and J.D.Tardos, Continuous mobile robot localization: vision vs laser,IEEE International Conference on Robotics and Automation(Cat. No. 99CH36288C) (ICRA), Detroit, MI, USA, 1999, Vol.4, 2917–2923. [24] S. Thrun, Robotic mapping: A survey, Exploring ArtificialIntelligence in the New Millenium, 2002, 1, 1–35. [25] M. Montemerlo and S. Thrun, FastSLAM: A Scalable Methodfor the Simultaneous Localization and Mapping Problem inRobotics (Springer-Verlag New York, Inc., NJ, USA, 2007). [26] C. Yi, J. Gu, Y. Zang, X. Wu, S. Zhang, and M. Guo,Path planning-oriented obstacle avoiding workspace modellingfor robot manipulator, International Journal of Robotics andAutomation, 34(1), 2019. Online publication. [27] W. Gharbieh and Al. Mousa, Robotic obstacle avoidancein a partially observable environment using feature ranking,International Journal of Robotics and Automation, 34(5),2019. Online publication. [28] L. Deng, X. Ma, J. Gu, Y. Li, Z. Xu, and Y. Wang, Artificialimmune network-based multi-robot formation path planningwith obstacle avoidance, International Journal of Robotics andAutomation, 31(3), 2016, 233–242. [29] M. Abdellatif and O.A. Montasser, Using ultrasonic rangesensors to control a mobile robot in obstacle avoidance behavior,Proceeding of the World Conference on Systemics, Cyberneticsand Informatics, 2001, 78–83. [30] N.Y. Ko, R.G. Simmons, and K.S. Kim, A lane based ob-stacle avoidance method for mobile robot navigation, KSMEInternational Journal, 17(11), 2003, 1693–703. [31] Y. Wang, A. Goila, R. Shetty, M. Heydari, A. Desai, andH. Yang, Obstacle avoidance strategy and implementation forunmanned ground vehicle using LIDAR, SAE InternationalJournal of Commercial Vehicles, 10, 2017, 50–55. [32] W. Czernek, W. Margas, R. Wygolik, S. Budzan, A. Zibiski, andR. Cupek, GPS and ultrasonic distance sensors for autonomousmobile platform, Studia Informatica, 37(4A), 2016, 51–67. [33] J.H. Rhee and J. Seo, Low-cost curb detection and localizationsystem using multiple ultrasonic sensors, Sensors, 19(6), 2019,1380–1389. [34] T.G. Dauphin, A. Rahmani, and C. Sueur, Bond graph aideddesign of controlled systems, Simulation Practice and Theory,7(5–6), 1999, 493–513. [35] P.J. Gawthrop, Bond graphs: A representation for mechatronicsystems, Mechatronics, 1(2), 1991, 127–156. [36] T.K. Bera, K. Bhattacharya, and A.K. Samantaray, Bondgraph model-based evaluation of a sliding mode controllerfor a combined regenerative and antilock braking system,Proceedings of the Institution of Mechanical Engineers, PartI, 225(7), 2011, 918–934. [37] T.K. Bera, K. Bhattacharya, and A.K. Samantaray, Evaluationof antilock braking system with an integrated model of fullvehicle system dynamics, Simulation Modelling Practice andTheory, 19, 2011, 2131–2150. [38] M. Quigley, K. Conley, B.P. Gerkey, J. Faust, T. Foote, J.Leibs, R. Wheeler, and A.R. Ng, ROS: An open-source robotoperating system, ICRA Workshop on Open Source Software,2009, Vol. 3, 1–5. [39] T.K. Bera, K. Bhattacharya, and A.K. Samantaray, Bondgraph model-based evaluation of a sliding mode controllerfor a combined regenerative and antilock braking system,Proceedings of the Institution of Mechanical Engineers, PartI: Journal of Systems and Control Engineering, 225(7), 2011,918–34. [40] R. Singh and T.K. Bera, Walking model of Jansen mechanism-based quadruped robot and application to obstacle avoidance,Arabian Journal for Science and Engineering, 2019, 1–2.
Important Links:
Go Back