SPATIOTEMPORAL AGGREGATION METHOD BASED ON TRAJECTORY DATA FOR LOGISTICS VEHICLE TRANSPORT MOTION ANALYSIS

Xian Meng, Lijun Wang, and Jianshuang Liu

References

  1. [1] S. Wallace and G. L˘az˘aroiu, Predictive control algorithms,real-world connected vehicle data, and smart mobility tech-nologies in intelligent transportation planning and engineering,Contemporary Readings in Law and Social Justice, 13(2), 2021,79–92.
  2. [2] W.C. Hu, H.T. Wu, H.H. Cho, and F.H. Tseng, Optimalroute planning system for logistics vehicles based on artificialintelligence, Journal of Internet Technology, 21(3), 2020,757–764.
  3. [3] S. Nataraj, D. Ferone, C. Quintero-Araujo, A. Juan, and P.Festa, Consolidation centers in city logistics: A cooperativeapproach based on the location routing problem, InternationalJournal of Industrial Engineering Computations, 10(3), 2019,393–404.
  4. [4] E. Demir, M. Hruˇsovsk´y, W. Jammernegg, and T. Woensel,Green intermodal freight transportation: Bi-objective mod-elling and analysis, International Journal of ProductionResearch, 57(19), 2019, 6162–6180.
  5. [5] S. Dodge, S. Gao, M. Tomko, and R. Weibel, Progress incomputational movement analysis–towards movement datascience, International Journal of Geographical InformationScience, 34(12), 2020, 2395–2400.
  6. [6] Y. Shi, D. Wang, J. Tang, M. Deng, H. Liu, and B. Liu,Detecting spatiotemporal extents of traffic congestion: Adensity-based moving object clustering approach, InternationalJournal of Geographical Information Science, 35(7), 2021,1449–1473.
  7. [7] L. Tang, F. Yan, B. Zou, W. Li, C. Lv, and K. Wang, Trajectoryprediction for autonomous driving based on multiscale spatial-temporal graph, IET Intelligent Transport Systems, 17(2),2023, 386–399.
  8. [8] N. Zuniga-Garcia, N.R. Juri, K.A. Perrine, and R.B.Machemehl, E-scooters in urban infrastructure: Understandingsidewalk, bike lane, and roadway usage from trajectory data,Case Studies on Transport Policy, 9(3), 2021, 983–994.
  9. [9] A. Graser, P. Widhalm, and M. Dragaschnig, The M3 massivemovement model: A distributed incrementally updatablesolution for big movement data exploration, InternationalJournal of Geographical Information Science, 34(12), 2020,2517–2540.
  10. [10] O. Lock, T. Bednarz, and C. Pettit, The visual analytics ofbig, open public transport data–a framework and pipeline formonitoring system performance in Greater Sydney, Big EarthData, 5(1), 2021, 134–159.
  11. [11] M. Li, P. Tong, M. Li, Z. Jin, J. Huang, and X. Hua,Traffic flow prediction with vehicle trajectories, Proceedings ofthe AAAI Conference on Artificial Intelligence, 35(1), 2021,294–302.
  12. [12] W. Li, S. Wang, X. Zhang, Q. Jia, and Y. Tian, Understandingintra-urban human mobility through an exploratory spa-tiotemporal analysis of bike-sharing trajectories, InternationalJournal of Geographical Information Science, 34(12), 2020,2451–2474.
  13. [13] T. Bogaerts, A.D. Masegosa, J.S. Angarita-Zapata, E. Onievaand P. Hellinckx, A graph CNN-LSTM neural network forshort and long-term traffic forecasting based on trajectorydata, Transportation Research Part C: Emerging Technologies,112, 2020, 62–77.
  14. [14] A. Mohamed, K. Qian, M. Elhoseiny, and C. Claudel,Social-STGCNN: A social spatio-temporal graph convolutionalneural network for human trajectory prediction, Proc. ofthe IEEE/CVF Conf. on Computer Vision and PatternRecognition, Seattle, WA, USA, 2020, 14424–14432.
  15. [15] T. Jia, C. Cai, X. Li, X. Luo, Y. Zhang, and X. Yu,Dynamical community detection and spatiotemporal analysisin multilayer spatial interaction networks using trajectory data,International Journal of Geographical Information Science,36(9), 2022, 1719–1740.10
  16. [16] G. Shao, Intelligent vehicle control system based on cloudcomputing and Internet of Things, Mechatronic Systems andControl, 49(4), 2021, 245–250.
  17. [17] Z. Yaghoubi and H. Zarabadipour, Hybrid neural-networkcontrol of mobile robot system via anti-control of chaos,Mechatronic Systems and Control (formerly Control andIntelligent Systems), 48(4), 2020, 239–248.
  18. [18] J.Sweafford Jr and F. Fahimi, A neural network model-based control method for a class of discrete-time nonlinearsystems, Mechatronic Systems and Control (formerly Controland Intelligent Systems), 49(2), 2021, 93–100.
  19. [19] T. Zhang, W. He, J. Huang, Z. He, and J. Li, Interactive visualanalytics of moving passenger flocks using massive smart carddata, Cartography and Geographic Information Science, 49(4),2022, 354–369.
  20. [20] T. Jia and C. Cai, Forecasting citywide short-term turningtraffic flow at intersections using an attention-based spatiotem-poral deep learning model, Transportmetrica B: TransportDynamics, 11(1), 2023, 683–705.
  21. [21] K. Rehrl, S. Gr¨ochenig, and S. Kranzinger, Why did a vehiclestop? A methodology for detection and classification of stopsin vehicle trajectories, International Journal of GeographicalInformation Science, 34(10), 2020, 1953–1979.
  22. [22] P. Zhao, D. Jonietz, and M. Raubal, Applying frequent-patternmining and time geography to impute gaps in smartphone-basedhuman-movement data, International Journal of GeographicalInformation Science, 35(11), 2021, 2187–2215.
  23. [23] Y. Liang and Z. Zhao, NETTRAJ: A network-based vehicletrajectory prediction model with directional representationand spatiotemporal attention mechanisms, IEEE Transac-tions on Intelligent Transportation Systems, 23(9), 2021,14470–14481.
  24. [24] C. Ren, L. Tang, X. Yang, and J. Long, Mapping grade-separated junctions in detail using crowdsourced trajectorydata, IEEE Transactions on Intelligent TransportationSystems, 23(6), 2021, 5552–5561.
  25. [25] C. Lei, C. Zhao, Y. Ji, Y. Shen, and Y. Du, Identifyingand correcting the errors of vehicle trajectories from roadsidemillimetre-wave radars, IET Intelligent Transport Systems,17(2), 2023, 418–434.
  26. [26] P. Chen, L. Wei, F. Meng, and N. Zheng, Vehicletrajectory reconstruction for signalized intersections: Ahybrid approach integrating Kalman Filtering and variationaltheory, Transportmetrica B: Transport Dynamics, 9(1), 2021,22–41.
  27. [27] Q. Yu, Y. Luo, D. Wang, C. Chen, L. Sun, and Y. Zhang, Usinginformation entropy and a multi-layer neural network withtrajectory data to identify transportation modes, InternationalJournal of Geographical Information Science, 35(7), 2021,1346–1373.
  28. [28] A. Hamdi, K. Shaban, A. Erradi, A. Mohamed, S.K. Rumi,and F.D. Salim, Spatiotemporal data mining: A survey onchallenges and open problems, Artificial Intelligence Review,2022, 1–48.
  29. [29] C. Yang and Z. Pei, Long-short term spatio-temporalaggregation for trajectory prediction, IEEE Transactions onIntelligent Transportation Systems, 24(4), 2023, 4114–4126.
  30. [30] B.C. Lin and T.C. Chan, Visualizing population mobilityfrom spatiotemporally aggregated mobile phone data via a 3Dgradient approach, Transactions in GIS, 27(1), 2023, 40–56.
  31. [31] A.S. Maihulla, I. Yusuf, and S.I. Bala, Reliability andperformance analysis of a series-parallel system using Gumbel-Hougaard family copula, Journal of Computational andCognitive Engineering, 1(2), 2022, 74–82.
  32. [32] M. Yang, Research on vehicle automatic driving targetperception technology based on improved MSRPN algorithm,Journal of Computational and Cognitive Engineering, 1(3),2022, 147–151.

Important Links:

Go Back