An Advanced Model for Short-Term Forecasting of Mean Wind Speed and Wind Electric Power

I.J. Ramírez-Rosado and L.A. Fernández-Jiménez

References

  1. [1] M.R. Milligan, AH. Miller, & F. Chapman, Estimating theeconomic value of wind forecasting to utilities, Proc. Windpower’95, American Wind Energy Association, Washington, DC,1995, 285–294.
  2. [2] G.N. Karioniotakis, G.S. Stavrakakis, & E.F. Nogaret, Windpower forecasting using advanced neural networks, IEEE Trans.on Energy Conversion, 11 (4), 1996, 762–767. doi:10.1109/60.556376
  3. [3] M.C. Alexiadis, P.S. Dokopoulos, & H.S. Sahsamanoglou,Wind speed and power forecasting based on spatial correlation5Table 4Comparation of ModelsModel RMS ACHPersistence 0.753 –Mean 1.774 - 135.6%New Reference 0.737 2.12%Holt-Winters (additive seasonality) 0.744 1.20%ARIMAX 0.700 7.04%TDNN 0.694 7.83%Fourier-MLPs 0.7063 6.20%Fourier-FISs 0.7061 6.23%Fourier-FISs with modified hour 0.6839 9.17%models, IEEE Trans. on Energy Conversion, 14 (3), 1999,836–837. doi:10.1109/60.790962
  4. [4] A.F. Atiya, S.M. El-Shoura, S.I. Shaheen, & M.S. El-Sherif, Acomparison between neural-network forecasting techniques—Case study: River flow forecasting, IEEE Trans. on neuralnetworks, 10 (2), 1999, 402–409. doi:10.1109/72.750569
  5. [5] T.S. Nielsen, A. Joensen, H. Madsen, L. Landberg, & G.Giebel, A new reference for wind power forecasting, WindEnergy, 1 (1), 1998, 29–34. doi:10.1002/(SICI)1099-1824(199809)1:1<29::AID-WE10>3.0.CO;2-B
  6. [6] S. Haykin, Neural networks: A comprehensive foundation(Upper Saddle River, NJ: Prentice Hall, 1999).
  7. [7] J.S.R. Jang, C.T. Sun, & E. Mizutani, Neuro-fuzzy and softcomputing (Englewood Cliffs, NJ: Prentice Hall, 1997).
  8. [8] T. Takagi & M. Sugeno, Fuzzy identification systems andits applications to modelling and control, IEEE Trans. onSystems, Man and Cybernetics, 15 (1), 1985, 116-132.

Important Links:

Go Back