R. Rajamani and Y.M. Cho
[1] C.F. Van Loan, How near is a stable matrix to an unstablematrix?, Contemporary Mathematics, 47, 1985, 465–477. [2] D. Hinrichsen & A.J. Pritchard, Stability radius of structuredpertubations and the algebraic Riccati equation, Systems andControl Letters, 8, 1986, 105–113. doi:10.1016/0167-6911(86)90068-X [3] C.C. Paige, Properties of numerical algorithms related tocomputing controllability, IEEE Trans. on Automatic Control,26 (1), 1981, 130–138. doi:10.1109/TAC.1981.1102563 [4] R. Eising, Between controllable and uncontrollable, Systems& Control Letters, 4, 1984, 263–264. doi:10.1016/S0167-6911(84)80035-3 [5] D.L. Boley & W.S. Lu, Measuring how far a controllable systemis from an uncontrollable one, IEEE Trans. on AutomaticControl, AC-31, 1986, 249–252. doi:10.1109/TAC.1986.1104240 [6] R. Byers, A bisection method for measuring the distance ofa stable matrix to the unstable matrices, SIAM Journal onScientific and Statistical Computing, 9, 1988, 875–881. doi:10.1137/0909059 [7] C. Kenney & A.J. Laub, Controllability and stability radii forcompanion form systems, Mathematics of Control, Signals andSystems, 1, 1988, 239–256. doi:10.1007/BF02551286 [8] B.A. Francis, A course in H∞control theory, Lecture Notesin Control and Information Sciences, Vol. 88 (New York:Springer-Verlag, 1987). [9] P.P. Khargonekar, I. Peterson, & K. Zhou, Robust stabilizationof uncertain linear systems, IEEE Trans. on Automatic Control,35 (3), 1990, 356–361. doi:10.1109/9.50357 [10] S. Bittanti, A.J. Laub, & J.C. Willems, The Riccati equation(Berlin: Springer-Verlag, 1991).
Important Links:
Go Back