H.M. Serag
[1] J.L. Lions, Optimal control of systems governed by partialdifferential equations (New York: Springer-Verlag, 1971). [2] J.L. Lions, Some methods in the mathematical analysis ofsystems and their control (Beijng: Science Press, 1981). [3] H.A. El-Saify, H.M. Serag, & B. Abdul-Gawad, On boundarycontrol for n x n elliptic systems involving operators withan infinite number of variables, Advances in Modelling &Analysis(France), 37(4), 2001, 32–42. [4] H.M. Serag & A.H. Qamlo, Boundary control for non-cooperative elliptic systems, Advances in Modelling & Analysis(France), 38(3, 4), 2001, 31–2. [5] J. Fleckinger-Pelle & H.M. Serag, Semi-linear cooperativeelliptic systems on Rn, Rendiconti di Matematica(Italy), 5(1),1995, 89–108. [6] I.M. Gali & H.M. Serag, Optimal control of cooperative ellipticsystems defined on Rn, Journal of the Egyptian MathematicalSociety, 3, 1995, 33–39. [7] H.M. Serag, On optimal control for elliptic systems withvariable coefficients, Revista de Matematicas Aplicadas, 19,1998, 37–1. [8] V. Barbu, Optimal control of the one-dimensional periodicwave equation, Applied Mathematics and Optimization, 35(1),1997, 77–90. doi:10.1007/s002459900038 [9] H.M. Hassan & H.M. Serag, Optimal control for quasi-staticproblem with viscous boundary conditions, Indian Journal ofPure & Applied Mathematics, 31 (7), 2000, 767–772. [10] A.V. Pukhlikov, Problems of the control of distributions indynamical systems, Automation and Remote Control, 65 (41),1995, 512–525. [11] A. Djellit & A. Yechoui, Existence of principal eigenvalues forsome boundary value problems, Seminaire D’analyse, E.D.P.,CEREMATH, Universit´e Toulouse 1, France, 1996–1997. [12] H.M. Serag, Distributed control for cooperative systems governedby Schrodinger operator, Journal of Discrete Mathematical Sciences & Cryptography, 3 (1-3), 2000, 227-234.
Important Links:
Go Back