F.S. Al-Anzi and A. Allahverdi
[1] M. Pinedo & X. Chao, Operations scheduling with applicationsin manufacturing and services (Boston, MA: Irwin/McGraw-Hill, 1999). [2] M.T. Ozsu & P. Valduriez, Principles of distributed databasesystems (New Jersey: Prentice-Hall, 1991). [3] F.S. Al-Anzi & A. Allahverdi, The relation between three-tired client-server internet database and two-machine flowshop,International Journal of Parallel and Distributed Systems andNetworks, 4, 2001, 94–101. [4] A. Allahverdi & F.S. Al-Anzi, Using two-machine flowshopwith maximum lateness objective to model multimedia dataobjects scheduling problem for WWW applications, Computersand Operations Research, 29, 2002, 971–994. doi:10.1016/S0305-0548(00)00097-6 [5] Y.K. Kwok, K. Karlapalem, I. Ahmad, & N.M. Pun, Designand evaluation of data allocation algorithms for distributedmultimedia database systems, IEEE Journal of Selected Areasin Comm., 14, 1996, 1332–1348. doi:10.1109/49.536483 [6] D.K. Manna & V.R. Prasad, Pseudopolynomial algorithms forCTV minimization in single machine scheduling, Computersand Operations Research, 24, 1997, 1119–1128. doi:10.1016/S0305-0548(97)00032-4 [7] C.A. Marangos, V. Govande, G. Sirinvasan, & J.W. Zimmers,Algorithms to minimize completion time variance in a two-machine flowshop, Computers & Industrial Engineering, 35,1998, 101–104. doi:10.1016/S0360-8352(98)00030-8 [8] G. Gowrishankar, C. Rajendran, & G. Srinivasan, Flowshopscheduling algorithms for minimizing the completion timevariance and the sum of squares of completion time deviationsfrom a common due date, European Journal of OperationalResearch, 132, 2001, 643–665. doi:10.1016/S0377-2217(00)00170-3 [9] W. Kubiak, Completion time variance minimization on a singlemachine is difficult, Operations Research Letters, 14, 1993,49–59. doi:10.1016/0167-6377(93)90019-D [10] U. Al-Turki, C. Fedjki, & A. Andijani, Tabu search for aclass of single-machine scheduling problems, Computers andOperations Research, 28, 2001, 1223–1230. doi:10.1016/S0305-0548(00)00036-8 [11] D.K. Manna & V.R. Prasad, Bounds for the position ofthe smallest job in completion time variance minimization,European Journal of Operational Research, 114, 1999, 411–419. doi:10.1016/S0377-2217(98)00002-2 [12] C.T. Ng, X. Cai, & T.C.E. Cheng, A tight lower bound forthe completion time variance problem, European Journal ofOperational Research, 92, 1996, 211–213. doi:10.1016/0377-2217(95)00165-4 [13] H.G. Campbell, R.A. Dudek, & M.L. Smith, A heuristic algorithm for the n-job, m-machine sequencing problem, Management Science, 16, 1970, B630–B637. [14] M. Nawaz, E. Enscore, & I. Ham, A heuristic algorithm forthe m-machine, n-job flowshop sequencing problem, OMEGA:The International Journal of Management Sciences, 11, 1983, 91–95. doi:10.1016/0305-0483(83)90088-9 [15] M.Y. Wang, S.P. Sethi, & S.L. Van De Velde, Minimizingmakespan in a class of reentrant shops, Operations Research,45, 1997, 702–712. [16] C.H. Pan & J.S. Chen, Scheduling alternative operations intwo-machine flow-shops, Journal of the Operational ResearchSociety, 48, 1997, 533–540. doi:10.1038/sj.jors.2600397 [17] P.S. Sundararaghavan, A.S. Kunnathur, & I. Viswanathan, Minimizing makespan in parallel flowshops, journal of the Operational Research Society, 48, 1997, 834-842. doi:10.1038/sj.jors.2600408
Important Links:
Go Back