A Vectorized Conjugate-Gradient Solver for Sparse Systems of Algebraic Equations

M.M. El-Awad

References

  1. [1] D.P. Mondkar & G.H. Powell, Large capacity equation solverfor structural analysis, Computers and Structures, 4, 1974,669–728.
  2. [2] M.R. Hestenes & E. Stiefel, Methods of conjugate gradientsfor solving linear systems, Journal of Research of the NationalBureau of Standards, 49, 1954, 409–436.
  3. [3] M. Benzi, C.D. Meyer, & M. Tuma, A sparse approximateinverse preconditioner for the conjugate gradient method,SIAM Journal on Scientific Computing, 17 (5), 1996, 1135–1149. doi:10.1137/S1064827594271421
  4. [4] T.A. Manteuffel, An incomplete factorization technique forpositive definite linear systems, Mathematics of Computation,34, 1980, 473–497. doi:10.2307/2006097
  5. [5] M.T. Jones & P.E. Plassmann, An improved incompleteCholesky factorization, ACM Transactions on MathematicalSoftware, 21 (1), 1995, 5–17. doi:10.1145/200979.200981
  6. [6] R.H. Chan & M.K. Ng, Conjugate gradient methods forToeplitz systems, SIAM Review, 38 (3), 1996, 427–482. doi:10.1137/S0036144594276474
  7. [7] C.R. Vogel, Sparse matrix computations arising in distributedparameter identification, SIAM Journal on Matrix Analysisand Applications, 20 (4), 1999, 1027–1037. doi:10.1137/S0895479897317703
  8. [8] I. Fried & J. Metzler, SOR vs. conjugate gradients in finite-element discretization, International Journal for NumericalMethods in Engineering, 12, 1978, 1329–1342. doi:10.1002/nme.1620120809
  9. [9] B. Hendrickson, R. Leland, & S. Plimpton, An efficient par-allel algorithm for matrix-vector multiplication, InternationalJournal of High Speed Computing, 7 (1), 1995, 73–83. doi:10.1142/S0129053395000051
  10. [10] J. Har & R.E. Fulton, A parallel finite element procedurefor contact-impact problems, Engineering with Computers, 19,2003, 67–84. doi:10.1007/s00366-003-0252-4
  11. [11] A. Peters, B. Romunde, & F. Sartoretto, Vectorized implemen-tation of some MCG codes for FE solution of large groundwaterflow problems, Proc. Int. Conf. on Computational Methods inFlow Analysis, Okayama, Japan, 1988, 123–130.
  12. [12] J.F. Epperson, An introduction to numerical methods andanalysis (New York: John Wiley & Sons, 2002).
  13. [13] P.M. Gresho, Time integration and conjugate gradient methodsfor the incompressible Navier-Stokes equations, invited paperpresented at the Sixth International Conference on FiniteElements in Water Resources, Lisbon, Portugal, 1986.
  14. [14] R.L. Lee & J.M. Leone, Jr., A modified finite element modelfor mesoscale flows over complex terrain, Computers andMathematics with Applications, 16, 1988, 57–68. doi:10.1016/0898-1221(88)90024-7
  15. [15] V. Haroutunian, A time-dependant finite element model foratmospheric dispersion of gases heavier than air, doctoral diss.,University of Manchester Institute of Science and Technology(UMIST), Manchester, UK, 1987.
  16. [16] D.P. Mondkar & G.H. Powell, Towards optimal in-core equationsolving, Computers and Structures, 4, 1974, 531–548. doi:10.1016/0045-7949(74)90005-4
  17. [17] N. Wansophark & P. Dechaumphai, Enhancement of segregatedfinite element method with adaptive meshing technique forviscous incompressible thermal flow analysis, Science Asia, 29,2003, 155–162. doi:10.2306/scienceasia1513-1874.2003.29.155
  18. [18] M.M. El-Awad, Efficient integration techniques for the finite-element method: One-point quadrature vs. analytic integra-tion, Proc. World Engineering Congress (WEC ’99), KualaLumpur, Malaysia, 1999, 85–90.

Important Links:

Go Back