Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
TOWARDS FAST AND SMOOTH SUBDIVISION SURFACE RECONSTRUCTION
H. Hussein Karam, F.F.M. Ghaleb, and Y.M. Abd El-Latif
References
[1] T. DeRose, M. Kass, & T. Truong, Subdivision surfaces incharacter animation, Proc. SIGGRAPH’1998, Orlando, USA,1998, 85–94.
doi:10.1159/000027570
[2] Subdivision for modeling and animation, Proc. SIG-GRAPH’2000 Course Notes, New Orleans, LA, USA.
[3] M. Sabin, Subdivision: Tutorial notes, IEEE Shape Modelingand Applications Int. Conf. (SMI’2001), Genova, Italy, May2001.
[4] E. Catmull & J. Clark, Recursively generated B-spline surfaceson arbitrary topological meshes, Computer Aided Design, 10(6),1978, 350–355.
doi:10.1016/0010-4485(78)90110-0
[5] D. Doo & M. Sabin, Analysis of the behavior of recursivedivision surfaces near extraordinary points, Computer AidedDesign, 10(6), 1978, 356–360.
doi:10.1016/0010-4485(78)90111-2
[6] C. Loop, Smooth subdivision surfaces based on triangles, mas-ter’s thesis, University of Utah, US, 1987.
[7] N. Dyne, D. Levin, & J. Gregory, A butterfly subdivisionscheme for surface interpolation with tension control, ACMTrans. on Graphics, 9 (2), 1990, 160–169.
doi:10.1145/78956.78958
[8] D. Zorin, P. Schroder, & W. Sweldens, Interpolating subdivisionfor meshes with arbitrary topology, Proc. SIGGRAPH’1996,New Orleans, LA, USA, 1996, 189–192.
doi:10.1145/237170.237254
[9] A. Levin, Interpolating nets of curves by smooth subdivisionsurfaces, Proc. SIGGRAPH’1999, Los Angeles, CA, USA,1999, 57–64.
doi:10.1145/311535.311541
[10] L. Velho, Using semi-regular 4-8 meshes for subdivision sur-faces, Journal of Graphics Tools, 5(3), 2000, 35–47.
[11] L. Velho & D. Zorin, 4-8 subdivision,Computer Aided Geomet-ric Design, 16(5), 2001, 397–427.
doi:10.1016/S0167-8396(01)00039-5
[12] J. Peters & U. Reif, The simplest subdivision scheme forsmoothing polyhedra, ACM Trans. on Graphics, 16 (4), 1997,420–431.
doi:10.1145/263834.263851
[13] J. Claes, K. Beets, & V. Frank, A corner-cutting scheme forhexagonal subdivision surfaces, Proc. IEEE Shape Modelingand Applications Int. Conf., Banff, Canada, May 2002, 3–20.
[14] K. Beets, J. Claes, & V. Frank, Borders, semi-sharp edgesand adaptivity for hexagonal subdivision surface schemes, inJ. Vince & R.A. Earnshaw (Eds.), Advances in modeling,animation and rendering (University of Bradford, England:Springer-Verlag, 2002), 151–166.
[15] L. Kobbelt, Sqrt(3) Subdivision, Proc. SIGGRAPH’2000, NewOrleans, LA, USA, 2000, 103–112.
doi:10.1145/344779.344835
[16] C. Mandal, H. Qin, & C. Vermuri, Dynamic modeling ofbutterfly subdivision surfaces, IEEE Trans. on Visualizationand Computer Graphics, 19(3), 2000, 427–436.
doi:10.1109/2945.879787
[17] M. Halstead, M. Kass, & T. DeRose, Fair interpolation usingCatmul-Clark surfaces, Proc. SIGGRAPH’1993, Anaheim, CA,USA, 1993, 35–44.
doi:10.1145/166117.166121
[18] H. Biermann, A. Levin, & D. Zorin, Piecewise smooth subdi-vision surfaces with normal control, Proc. SIGGRAPH’2000,New Orleans, Louisiana, USA, 2000, 113–120.
doi:10.1145/344779.344841
[19] A. Levin, Combined subdivision schemes for the design ofsurfaces satisfying boundary conditions, CAGD, 16(5), 1999,345–354.
[20] A. Nasri, Polyhedral subdivision methods for free-form surfaces,ACM Trans. on Graphics, 6(1), 1987, 29–73.
doi:10.1145/27625.27628
[21] A. Nasri, Interpolating meshes of boundary intersecting curvesby subdivision surfaces, The Visual Computer, 16 (1), 2000,3–14.
doi:10.1007/s003710050002
[22] A. Nasri, Constructing polygonal complexes with shape handlesfor curve interpolation by subdivision surfaces, Computer AidedDesign, 17(7), 2001, 753–765.
doi:10.1016/S0010-4485(01)00093-8
[23] T. Sederberg, J. Zheng, J. Sewell, & M. Sabin, Non-uniform re-cursive subdivision surfaces, Proc. SIGGRAPH’1998, Orlando,Florida, USA, 1998, 387–394.
doi:10.1145/280814.280942
[24] A. Vlachos, J. Peters, C. Boyed, & J. Michell, Curved PNtriangles, ACM Symp. on Interactive 3D Graphics, USA, 2001,159–166.
doi:10.1145/364338.364387
[25] G. Salomon, A. Leclercq, S. Akkouche, & E. Gallin, Normalcontrol using N-adic subdivision schemes, Proc. IEEE SMI’2002Conf., Banff, Canada, 2002, 21–28.
doi:10.1109/SMI.2002.1003524
[26] T.W. Sederberg, J. Zheng, A. Bakenov, & A. Nasri, T-splines &T-NURCCs, ACM Trans. on Graphics, 22 (3), 2003, 477–484.
doi:10.1145/882262.882295
[27] M. El-Zahar, F. Ghaleb, H. Hussein Karam, & Y. Abd El-Latif,A novel optimized subdivision algorithm for modeling andanimation, IASTED Int. Conf. on Modelling and Simulation(MS’2004), Marina del Rey, USA, 2004, 436–441.
[28] G.M. Chaikin, An algorithm for high-speed curve generation,CG and IP, Computer Graphics and Image Processing, 1974,346–349.
[29] A. Habib & J. Warren, Edge and vertex insertion for a classc1 subdivision surface, Computer Aided Geometric Design,16 (4), 1999, 223–247.
doi:10.1016/S0167-8396(98)00045-4
[30] H. Biermann, D. Zorin, I. Martin & F. Bernardini, Sharpfeatures on multi-resolution subdivision surfaces, IEEE PacificGraphics Int. Conf., Tokyo, Japan, 2001, 140–149.
[31] H. Hussein Karam, A. Bastanfard, & M. Nakajima, A novelmulti-resolution anthropometrical algorithm for realistic sim-ulation and manipulation of facial appearance, in J. Vince &R.A. Earnshaw (Eds.), Advances in Modeling, Animation andRendering (University of Bradford, England: Springer-Verlag,2002), 315–331.175
[32] I. Guskov, W. Sweldens, & P. Schroder, Multi-resolution signalprocessing for meshes, Proc. SIGGRAPH’99, Los Angeles, CA,USA, 1999, 325–334.
doi:10.1145/311535.311577
Important Links:
Abstract
DOI:
10.2316/Journal.202.2006.2.202-1823
From Journal
(202) International Journal of Computers and Applications - 2006
Go Back