AN ADVANCED VOF ALGORITHM FOR OIL BOOM DESIGN

J. Fang and K.-F.V. Wong

References

  1. [1] J.-M. Lo, Laboratory investigation of single floating boomsand series of booms in the prevention of oil slick and jellyfishmovement, Ocean Engineering, 23(6), 1996, 519–531. doi:10.1016/0029-8018(95)00064-X
  2. [2] K.V. Wong & D. Guerrero, Quantitative analysis of shorelineprotection by boom arrangements, Proc. 2nd Int. Oil SpillR&D Forum, London, May 1995.
  3. [3] K.V. Wong & A. Wolek, Application of flow visualization to thedevelopment of an innovative boom system, Proc. 19th Arcticand Marine Oil Spill Program Technical Seminar, Calgary,Canada, June 1996.
  4. [4] K.V. Wong & I. Kusijanovic, Oil spill recovery methods forinlets, rivers and canals, Proc. Int. Oil Spill Conf., Seattle,Washington, March 1999.
  5. [5] M. Natori & H. Kawarada, Numerical solution of free surfacedrainage problem of two immiscible fluids by the boundaryelement method, Japanese Journal of Applied Physics, 24,1985, 1359–1362. doi:10.1143/JJAP.24.1359
  6. [6] H.C. Henderson, M. Kok, & W.L. de Koning, Computer-aided spillway design using the boundary element method andnon-linear programming, International Journal of NumericalMathematical Fluids, 13, 1991, 625–641. doi:10.1002/fld.1650130506
  7. [7] D.R. Lynch, Unified approach to simulation on deformingelements with application to phase change problems, Journalof Computational Physics, 47, 1982, 387–411. doi:10.1016/0021-9991(82)90090-0
  8. [8] P. Bach & O. Hassager, An algorithm for the use of theLagrangian specification in Newtonian fluid mechanics andapplications to free-surface flow, Journal of Fluid Mechanics,152, 1985, 173–190. doi:10.1017/S0022112085000635
  9. [9] G. Ryskin & L.G. Leal, Numerical solution of free-boundaryproblems in fluid mechanics, Part 1: The finite-differencetechnique, Journal of Fluid Mechanics, 148, 1984, 1–17. doi:10.1017/S0022112084002214
  10. [10] N.S. Asaithambi, Computation of free-surface flows, Journalof Computational Physics, 73, 1987, 380–394. doi:10.1016/0021-9991(87)90143-4
  11. [11] S. Osher & J.A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi for-mulations, Journal of Computational Physics, 79, 1988, 12–49. doi:10.1016/0021-9991(88)90002-2
  12. [12] M. Sussman, P. Smereka, & S. Osher, A level set approach forcomputing solutions to incompressible two-phase flow, Journalof Computational Physics, 114, 1994, 146–159. doi:10.1006/jcph.1994.1155
  13. [13] R.K.-C. Chan & R.L. Street, A computer study of finite-amplitude water waves, Journal of Computational Physics, 6,1970, 68–94. doi:10.1016/0021-9991(70)90005-7
  14. [14] H. Miyata, Finite difference simulation of breaking waves,Journal of Computational Physics, 65, 1986, 179–214. doi:10.1016/0021-9991(86)90011-2
  15. [15] A.J. Chorin, Curvature and solidification, Journal of Compu-tational Physics, 57, 1985, 472–490. doi:10.1016/0021-9991(85)90191-3
  16. [16] D.L. Young, Time-dependent multi-material flow with largefluid distortion, in K.W. Morton & M.J. Baineks (Eds.),Numerical methods for fluid dynamics (New York: AcademicPress, 1982).
  17. [17] N. Ashgriz & J.Y. Poo, FLAIR: Flux line-segment model foradvection and interface reconstruction, Journal of Computa-tional Physics, 93, 1991, 449–468. doi:10.1016/0021-9991(91)90194-P
  18. [18] S.-O. Kim & H.C. No, Second-order model for free surfaceconvection and interface reconstruction, International Journalfor Numerical Methods in Fluids, 26, 1998, 79–100.43 doi:10.1002/(SICI)1097-0363(19980115)26:1<79::AID-FLD627>3.0.CO;2-9
  19. [19] E.G. Puckett, A.S. Almgren, J.B. Bell, D.L. Marcus, & W.J.Rider, A high-order projection method for tracking fluid in-terface in variable density incompressible flows, Journal ofComputational Physics, 130, 1997, 269–282. doi:10.1006/jcph.1996.5590
  20. [20] S.V. Patankar, Numerical heat transfer and fluid flow (Wash-ington, DC: Hemisphere Publishing, 1979).
  21. [21] R.C. Ertekin & H. Sundararaghavan, The calculations of theinstability criterion for a uniform viscous flow past an oil boom,Journal of Offshore Mechanics and Arctic Engineering, 117,1995, 24–29. doi:10.1115/1.2826987
  22. [22] S.C.R. Dennis, O. Wang, M. Coutanceau, & J.-L. Launay,Viscous flow normal to a flat plate at moderate Reynoldsnumbers, Journal of Fluid Mechanics, 248, 1993, 605–635. doi:10.1017/S002211209300093X
  23. [23] G.A.L. Delvigne, Barrier failure by critical accumulation ofviscous oil, Proc. Int. Oil Spill Conf., USEPA, USCG, andAPI, San Antonio, TX, 1989, 143–148.
  24. [24] S.T. Grilli, Z. Hu, & L.S. Malcolm, Numerical modeling of oilcontainment by a boom, Proc. 19th Arctic and Marine Oil SpillProgram Technical Seminar, Calgary, Canada, 1996, 343–376.

Important Links:

Go Back