P.-F. Pai, S. Deng, C.-C. Lai, and P.-S. Wu
[1] L.R. Tsai, Y.H. Chang, & F.L. Tsao, The design of optimalstacking sequence for laminated FRP plates with in planeloading, Composite Structures, 55(4), 1995, 565–580. doi:10.1016/0045-7949(94)00321-S [2] L.R. Tsai & C.H. Liu, A comparison between two optimizationmethods on the stacking sequence of fiber-reinforced compositelaminate, Composite Structures, 55(3), 1995, 515–525. doi:10.1016/0045-7949(95)98877-S [3] C.J. Chen, An efficient method for the optimization of plystacking sequence for constant thickness composite laminateplate, master’s thesis, Da-Yeh University, Taiwan, 2000. [4] J.H. Park, J.H. Hwang, C.S. Lee, & W. Hwang, Stack-ing sequence design of composite laminates for maxi-mum strength using genetic algorithms, Composite Struc-tures, 52, 2001, 217–231. doi:10.1016/S0263-8223(00)00170-7 [5] V.B. Gantovnik, Z. Gurdal, & L.T. Watson, A genetic algo-rithm with memory for optimal design of laminated sandwichcomposite panels, Composite Structures, 58, 2002, 513–520. doi:10.1016/S0263-8223(02)00128-9 [6] B. Liu, T.R. Haftka, M.A. Akgun, & A. Todoroki, Permuta-tion genetic algorithm for stacking sequence design of compos-ite laminates, Computer Methods in Applied Mechanics andEngineering, 186, 2000, 357–372. doi:10.1016/S0045-7825(99)90391-2 [7] A. Muc & W. Gurba, Genetic algorithm and finite elementanalysis in optimization of composite structures, CompositeStructures, 54, 2001, 275–281. doi:10.1016/S0263-8223(01)00098-8 [8] G. Soremekun, Z. Gurdal, R.T. Haftka, & L.T. Watson,Composite laminate design optimization by genetic algorithmswith generalized elitist selection, Composite Structures, 79,2001, 131–143. doi:10.1016/S0045-7949(00)00125-5 [9] G. Soremekun, Z. Gurdal, C. Kassapoglou, & D. Toni, Stackingsequence blending of multiple composite laminates using geneticalgorithms, Composite Structures, 56, 2002, 53–62. doi:10.1016/S0263-8223(01)00185-4 [10] M. Walker & R.E. Smith, A technique for the multi-objectiveoptimization of laminated composite structures using geneticalgorithms and finite element analysis, Composite Structures,62, 2003, 123–128. doi:10.1016/S0263-8223(03)00098-9 [11] C.-C. Lin & Y.-J. Lee, Stacking sequence optimization oflaminated composite structures using genetic algorithm withlocal improvement, Composite Structures, 63, 2004, 339–345. doi:10.1016/S0263-8223(03)00182-X [12] R.B. Pipes & N.J. Pagano, Interlaminar stresses in compositelaminates under uniform axial extension, Journal of CompositeMaterials, 4, 1970, 538–548. [13] N.J. Pagano & R.B. Pipes, The influence of stacking sequenceon laminate strength, Journal of Composite Materials, 5, 1971,50–57. doi:10.1177/002199837100500105 [14] A.S.D. Wang & F.W. Crossman, Some new results on edgeeffect in symmetric composite materials, Journal of CompositeMaterials, 11, 1977, 92–106. doi:10.1177/002199837701100110 [15] C. Kassapoglou & P.A. Lagace, An efficient method for thecalculation of interlaminar stresses in composite materials,Journal of Applied Mechanics, 53, 1986, 744–760. [16] E.F. Rybicki, Approximation three-dimensional solutions forsymmetric laminates under in-plane loading, Journal of Com-posite Materials, 5, 1971, 354–361. doi:10.1177/002199837100500305 [17] J. Holland, Adaptation in natural and artificial systems (An-nArbor, MI: University of Michigan Press, 1975). [18] D.E. Goldberg & Jr. R. Lingle, Alleles, loci and the TravelingSalesman Problem, Proc. Int. Conf. on Genetic Algorithms, ed.66J.J. Grefenstette (Hillsdale, NJ: Lawrence Erlbaum Associates,1985). [19] S.A. Brah & J.L. Hunsucker, Branch and bound algorithmfor the flow shop with multiple processors, European JournalOperational Research, 51, 1991, 88–99.Appendix A¯S(k) =¯S(k)11¯S(k)12¯S(k)13 0 0 ¯S(k)16¯S(k)12¯S(k)22¯S(k)23 0 0 ¯S(k)26¯S(k)13¯S(k)23¯S(k)33 0 0 ¯S(k)360 0 0 ¯S(k)44¯S(k)45 00 0 0 ¯S(k)45¯S(k)55 0¯S(k)16¯S(k)26¯S(k)36 0 0 ¯S(k)66(A1)¯S(k): the compliance tensor of the k-th ply (A2)¯S(k)11 = S(k)11 m4+ (2S(k)12 + S(k)66 )m2n2+ S(k)22 n4(A3)¯S(k)12 = (S(k)11 + S(k)22 − S(k)66 )m2n2+ S(k)12 (m4+ n4) (A4)¯S(k)13 = S(k)13 m2+ S(k)23 n2(A5)¯S(k)22 = S(k)11 n4+ (2S(k)12 + S(k)66 )m2n2+ S(k)22 m4(A6)¯S(k)23 = S(k)13 n2+ S(k)23 m2(A7)¯S(k)33 = S(k)33 (A8)¯S(k)16 = (2S(k)11 − 2S(k)12 − S(k)66 )nm3− (2S(k)22 − 2S(k)12 − S(k)66 )mn3(A9)¯S(k)26 = (2S(k)11 − 2S12 − S66)n3m− (2S22 − 2S12 − S66)m3n (A10)¯S(k)36 = 2(S(k)13 − S(k)23 )mn (A11)¯S(k)44 = S(k)44 m2+ S(k)55 n2(A12)¯S(k)45 = (S(k)55 − S(k)44 )mn (A13)¯S(k)55 = S(k)44 n2+ S(k)55 m2(A14)¯S(k)66 = 4(S(k)11 − 2S(k)12 + S(k)22 )m2n2+ S(k)66 (m2− n2)2(A15)where:S(k)ij : the interlaminar strain of the k-th plyi, j: directionsm: cos θn: sin θAppendix Bf1 =12nk=1[˜σ(k)22 ]2¯S(k)22 −[ ¯S(k)12 ]2¯S(k)11(B1)f2 =1120nk=1{3[˜σ(k)22 ]2+ 15˜σ(k)22 B(k)4 + 20˜σ(k)22 B(k)5+ 20[B(k)4 ]2+ 60B(k)4 B(k)5 + 60[B(k)5 ]2}ׯS(k)22 −[ ¯S(k)13 ]2¯S(k)11(B2)f3 =16nk=1{[˜σ(k)22 ]2+ 3˜σ(k)22 B(k)4 + 3[B(k)4 ]2} ¯S(k)44 (B3)f4 =16nk=1{[˜σ(k)12 ]2+ 3˜σ(k)12 B(k)2 + 3[B(k)2 ]2} ¯S(k)55 (B4)f5 =32nk=1[˜σ(k)12 ]2¯S(k)66 −[ ¯S(k)16 ]¯S(k)11(B5)f6 =12nk=1˜σ(k)22 [˜σ(k)11¯S(k)11 + ˜σ(k)22¯S(k)12 + ˜σ(k)12¯S(k)16 ] (B6)f7 =12nk=1˜σ(k)12 [˜σ(k)11¯S(k)11 + ˜σ(k)22¯S(k)12 + ˜σ(k)12¯S(k)16 ] (B7)f8 =16nk=1{[˜σ(k)22 ]2+ 3˜σ(k)22 B(k)4 + 6˜σ(k)22 B(k)4 }ׯS(k)22 −¯S(k)12¯S(k)13¯S(k)11(B8)f9 = ˜σ(k)22 ˜σ(k)12¯S(k)26 −¯S(k)12¯S(k)16¯S(k)11(B9)f10 =16nk=1˜σ(k)12 [˜σ(k)22 + 3B(k)4 + 6B(k)5 ]¯S(k)36 −¯S(k)13¯S(k)16¯S(k)11(B10)f11 =16nk=1[2˜σ(k)22 ˜σ(k)12 + 3˜σ(k)22 B(k)2 + 3˜σ(k)12 B(k)4+ 6B(k)2 B(k)4 ] ¯S(k)45 (B11)67 doi:10.1016/0377-2217(91)90148-O
Important Links:
Go Back