GENETIC CLUSTERING ALGORITHMS: A COMPARISON SIMULATION STUDY

R. Baragona, L. Bocci, and C.M. Medaglia

References

  1. [1] R.M. Cormack, A review of classification, Journal of the RoyalStatistical Society (Series A), 14, 1971, 279–298.
  2. [2] S.Z. Selim & M.A. Ismail, K-means type algorithms: Ageneralized convergence theorem and characterization of localoptimality, IEEE Trans. on Pattern Analysis and MachineIntelligence, 6, 1984, 81–87.
  3. [3] R.C. Dubes & A.K. Jain, Clustering techniques: The user’sdilemma, Pattern Recognition, 8, 1976, 247–260. doi:10.1016/0031-3203(76)90045-5
  4. [4] U. Maulik & S. Bandyopadhyay, Genetic algorithm-basedclustering technique, Pattern Recognition, 33, 2000, 1455–1465. doi:10.1016/S0031-3203(99)00137-5
  5. [5] E. Falkenauer, Genetic algorithms and grouping problems (NewYork: Wiley, 1998).
  6. [6] L.Y. Tseng & S.B. Yang, A genetic approach to the automaticclustering problem, Pattern Recognition, 34, 2001, 415–424. doi:10.1016/S0031-3203(00)00005-4
  7. [7] S. Bandyopadhyay & U. Maulik, Genetic clustering for automatic evolution of clusters and application to image classification, Pattern Recognition, 35, 2002, 1197–1208. doi:10.1016/S0031-3203(01)00108-X
  8. [8] G.W. Milligan, An algorithm for generating artificial testclusters, Psychometrika, 50, 1985, 123–127. doi:10.1007/BF02294153
  9. [9] L. Hubert & P. Arabie, Comparing partitions, Journal ofClassification, 2, 1985, 193–218. doi:10.1007/BF01908075
  10. [10] W.T. Federer, Experimental design: Theory and application(New York: Macmillan, 1955).
  11. [11] C.A. Murthy & N. Chowdhury, In search of optimal clustersusing genetic algorithms, Pattern Recognition Letters, 17, 1996,825–832. doi:10.1016/0167-8655(96)00043-8
  12. [12] R. Baragona, C. Calzini, & F. Battaglia, Genetic algorithmsand clustering: An application to Fisher’s iris data, in S.Borra, R. Rocci, M. Vichi, & M. Schader (Eds.), Advances inclassification and data analysis (New York: Springer-Verlag,2001), 109–118.
  13. [13] S. Paterlini, S. Favaro, & T. Minerva, Genetic approaches fordata clustering, Meeting of the Classification and Data Analysis Group of the Italian Statistical Society—CLADAG2001,Palermo, Italy, 2001, 33–36.
  14. [14] R. Tibshirani, G. Walther, & T. Hastie, Estimating the numberof clusters in a data set via the gap statistic, Journal of theRoyal Statistical Society (Series B), 63, 2001, 411–423. doi:10.1111/1467-9868.00293

Important Links:

Go Back