STATE-DEPENDENT STEERING CONTROL FOR NONHOLONOMIC CONTROL SYSTEMS: A FIRE TRUCK EXAMPLE

Fazal-ur-Rehman

References

  1. [1] R.W. Brockett, R.S. Millman, & H.J. Sussman (Eds.), Asymptotic stability and feedback stabilization: Differential geometriccontrol theory (Boston: Birkhauser, 1983), 181–191.
  2. [2] I. Kolmanovsky & N.H. McClamroch, Developments in nonholonomic control problems, IEEE Control Systems Magazine,15 (6), 1995, 20–36. doi:10.1109/37.476384
  3. [3] A.P. Aguiar, Nonlinear motion control of nonholonomic andunderactuated systems, doctoral diss., Department of ElectricalEngineering, Instituto Superior Tecnico, IST, Lisbon, Portugal,2002.
  4. [4] F. Alonge, F. D’Ippolito, & F. Raimondi, Trajectory trackingof underactuated underwater vehicles, Proc. 40th IEEE Conf.on Decision and Control, 5, Orlando, FL, December 2001,4421–4426. doi:10.1109/CDC.2001.980898
  5. [5] A. Behal, D. Dawson, W. Dixon, & Y. Fang, Tracking andregulation control of an underactuated surface vessel with342nonintegrable dynamics, IEEE Trans. on Automatic Control,47 (3), 2002, 495–500. doi:10.1109/9.989148
  6. [6] L. Bushnell, D. Tilbury, & S.S. Sastry, Steering three input chained form nonholonomic systems using sinusoid: Thefire truck example, European Control Conf., Groningen, TheNetherlands, June 1993, 1432–1437.
  7. [7] P. Morin & C. Samson, Control of nonlinear chained systems:From the Routh-Hurwitz stability criterion to time-varyingexponential stabilizers, IEEE Trans. on Automatic Control,45 (1), 2000, 141–146. doi:10.1109/9.827372
  8. [8] J.B. Pomet, Explicit design of time-varying stabilizing controllaws for a class of controllable systems without drift, Systemsand Control Letters, 18, 1992, 147–158. doi:10.1016/0167-6911(92)90019-O
  9. [9] A. Astolfi, Discontinuous control of the Brockett integrator,European Journal of Control, 4 (1), 1998, 49–63.
  10. [10] M.S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Trans. onAutomatic Control, 43 (4), 1998, 475–482. doi:10.1109/9.664150
  11. [11] C. Canudas de Wit & H. Berghuis, Practical stabilization ofnonlinear systems in chained form, Proc. 33rd IEEE Conf. onDecision and Control, Orlando, FL, December 1994, 3475–3479. doi:10.1109/CDC.1994.411684
  12. [12] J.M. Godhavn & O. Egeland, A Lyapunov approach to exponential stabilization of nonholonomic systems in power form,IEEE Trans. on Automatic Control, 42 (7), 1997, 1028–1032. doi:10.1109/9.599989
  13. [13] P. Lucibello & G. Oriolo, Robust stabilization via iterative statesteering with application to chained-form systems, Automatica,37 (1), 2001, 71–79. doi:10.1016/S0005-1098(00)00124-2
  14. [14] M. Vendittelli & G. Oriolo, Stabilization of the general twotrailer system, Proc. 2000 IEEE Int. Conf. on Robotics andAutomation, San Francisco, 2000, 1817–1823. doi:10.1109/ROBOT.2000.844859
  15. [15] J. Guldner & V.I. Utkin, Stabilization of nonholonomic mobilerobots using Lyapunov functions for navigation and slidingmode control, 33rd IEEE Conf. on Decision and Control,Orlando, FL, December 1994, 2967–2972. doi:10.1109/CDC.1994.411340
  16. [16] H. Ye, A.N. Michel, & L. Hou, Stability theory for hybriddynamical systems, IEEE Trans. on Automatic Control, 43 (4),1998, 461–474. doi:10.1109/9.664149
  17. [17] R.M. Murray, Z. Li, & S.S. Sastry, A mathematical introductionto robotic manipulation (Boca Raton, Florida: CRC PressLLC, 1994).
  18. [18] R.M. Murray & S.S. Sastary, Nonholonomic motion planning,IEEE Trans. on Automatic Control, 38 (5), 1993, 700–716. doi:10.1109/9.277235

Important Links:

Go Back