R.G. Kavasseri
[1] J.M. Rodriguez, J.L. Fernandez, D. Beato, R. Iturbe, J. Usaola,P. Ledesma, & J.R. Wilhelmi, Incidence on power systemdynamics of high penetration of fixed speed and doubly fedwind energy systems: Study of the Spanish case, IEEE Trans.on Power Systems, 17(4), 2002, 1089–1095. doi:10.1109/TPWRS.2002.804971 [2] F.P. de Mello, J.W. Feltes, L.N. Hannett, & J.C. White,Application of induction generators in power system, IEEETrans. on Power Apparatus and Systems, 101(9), 1982, 3385–3393. doi:10.1109/TPAS.1982.317510 [3] A.E. Feijoo & J. Cidras, Modeling of wind farms in the loadflow analysis, IEEE Trans. on Power Systems, 15(1), 2000,110–115. doi:10.1109/59.852108 [4] M. Pöller & S. Achilles, Aggregated wind park models foranalyzing power system dynamics, Proc. 4th Int. Workshopon Large Scale Integration of Wind Power and TransmissionNetworks for Offshore Wind Farms, Billund, Denmark, 2003. [5] E.G. Potamianakis & C.D. Vournas, Aggregation of windfarms in distribution networks, Proc. European Wind EnergyConference and Exhibition, Madrid, Spain, 2003. [6] E. Muljadi, Y. Wan, C.P. Buttefield, & B. Parsons, A studyof a wind farm power system, Report: NREL/CP-500-30814,National Renewable Energy Laboratory, Golden, U.S.A. [7] D.S. Brereton, D.G. Lewis, & C.C. Young, Representation ofinduction motor loads during power system stability studies,AIEE Trans., 76, 1957, 451–461. [8] R.G. Kavasseri, Steady state analysis of an induction generatorinfinite bus system, Proc. 3rd IASTED Int. Conf. Power andEnergy Systems, Marbella, Spain, 2003. [9] J. Cidras & A.E. Feijoo, A linear dyanamic model for aynchronous wind turbines with mechanical fluctuations, IEEETrans. on Power Systems, 17(3), 2002, 681–687. doi:10.1109/TPWRS.2002.800912 [10] A.E. Feijoo & J. Cidras, Analysis of mechanical power fluctuations in aynchronous WEC’s, IEEE Trans. on Energy Conversion, 14(3), 1999, 284–291. doi:10.1109/60.790871 [11] J.R. Winkelman & S. H. David, Control design and performanceanalysis of a 6 MW wind turbine generato, IEEE Trans. onPower Apparatus Systems, 102(5), 1983, 1340–1347. doi:10.1109/TPAS.1983.318083 [12] E.S. Abdin & W. Xu, Control design and dynamic performanceanalysis of a wind turbine-induction generator unit, IEEETrans. on Energy Conversion, 15(1), 2000, 91–96.Appendix A: Induction Generator DataThe machine constants To, x and xo are defined as follows:Table 5Electrical Data for Induction Generators in P.U.(On Machine Base)Parameter Case 1 Case 2 Case 3xr 0.143 0.0639 0.135xs 0.0087 0.1878 1.19rr 0.019 0.00612 0.0339rs 0.0059 0.00571 0.0059xM 4.76 2.78 4.161To=xr + xmωsrr,xo = xr + xm,x = xs + xrxmxr + xm.The system parameters are assumed to be Eb = 1.0p.u., re = 0.Appendix B: Coefficients and ParametersIn (5), the parameters are described as follows:a11 = re + rs − x Ycre − Ycrsxea12 = xe + x +Ycrsre − Ycx xeb1= Erre − Emxe + Ebrs,b2= Emre + Erxe + EbxIn (7–9) the parameters are described as follows:a2 = xe + x −Ycxex ,b1 =a2 − xea2x ,xa = xo − xb2 = αo(1 + xab1), αo =1To, a3 =αoxaEba2,a4 =Eb2Ha2In Proposition 3, the coefficients η1, . . . , η7 are definedas follows:η1 = K1c4b2,η2 = −2abc4K1 + 4c2x b2K1η3 = K1a2c4+ 4x 2b2K1 + 2c2x 2b2K1− 8abc2x K1 − K2b2c2η4 = 4c2a2x K1 + 4x 3b2K1 − 4abc2x 2K1− 8x 2ab + 2abc2K2η5 = 4x 2a2K1 + 2c2a2x 2K1 − 8abx 3K1 + x 4b2K1− K2a2c2− b2x 2K2 + 4abcx K2η6 = −2abx 4K1 − 2cx a2K2 + 2abx 2K2η7 = K1x 4a2− K2x 2a266where:a = αo(1 + xa), b = αoYcxe, c = 1 − Ycx ,K1 = 4P2mω2s , K2 = 4PmωsαoxaE2b doi:10.1109/60.849122
Important Links:
Go Back