AN IMPROVED UNSUPERVISED CLUSTERING ALGORITHM BASED ON POPULATION MARKOV CHAIN

F.W. Yang, H.J. Lin, and S.H. Yen

References

  1. [1] S. Theodoridis & K. Koutroumbas, Pattern recognition (New York: Academic Press, 1999).
  2. [2] R.O. Duda, P.E. Hart, & D.G. Stork, Pattern classification, 2nd ed. (New York: John Wiley, 2001).
  3. [3] A.K. Jain, M.N. Murty, & P.J. Flynn, Data clustering: A review, ACM Computing Surveys, 31 (3), 1999, 264–323. doi:10.1145/331499.331504
  4. [4] Z. Michalewicz, Genetic algorithms + data structures =evolution programs (New York: Springer Verlag, 1992).
  5. [5] M. Mitchell, An introduction to genetic algorithms (London: MIT Press, 1996).
  6. [6] R.L. Haupt & S.E. Haupt, Practical genetic algorithms, 2nd ed. (New York: John Wiley, 2004).
  7. [7] H.J. Lin, F.W. Yang, & Y.T. Kao, An efficient GA-based clustering technique, Tamkang Journal of Science and Engineering, 8 (2), 2005, 113–122.
  8. [8] D. Jones & M.A. Beltramo, Solving partitioning problems with genetic algorithms, Proc. 4th Int. Conf. on Genetic Algorithms, California, Morgan Kaufman, 1991, 442–449.
  9. [9] G.P. Babu & M.N. Murty, Clustering with evolution strategies, Pattern Recognition, 27, 1994, 321–329. doi:10.1016/0031-3203(94)90063-9
  10. [10] U. Maulik & S. Bandyopadhyay, Genetic algorithm-based clustering technique, Pattern Recognition, 33, 2000, 1455–1465. doi:10.1016/S0031-3203(99)00137-5
  11. [11] S. Bandyopadhyay & U. Maulik, Genetic clustering for automatic evolution of clusters and application to image classification, Pattern Recognition, 35, 2002, 1197–1208. doi:10.1016/S0031-3203(01)00108-X
  12. [12] H.-J. Lin, F.-W. Yang, & Y.-T. Kao, Efficient clustering based on population Markov chain, Proc. IASTED Int. Conf. on Modeling, Simulation and Optimization, Kauai, Hawaii, USA, 2004, 117–123.
  13. [13] A.E. Eiben, E.H.L. Arts, & K.M. Van Hee, Global convergence of genetic algorithms: A Markov chain analysis, in H.P. Schwefel & R. Manner (Eds.), Parallel problem solving from nature (Berlin: Springer, 1991), 4–12.
  14. [14] Y. Leung, Y. Gao, & Z.B. Xu, Degree of population diversity: A perspective on premature convergence in genetic algorithms and its Markov chain analysis, IEEE Trans. on Neural Networks, 8 (5), 1997, 1165–1176. doi:10.1109/72.623217
  15. [15] Y. Gao, Z.B. Xu, & G. Li, Theoretical analyses, new algorithms, and some applications of genetic algorithms: A review of some recent work, in K.Y. Cai, G. Chen, & M. Ying (Eds.), Fuzzy logic and soft computing (New York: Kluwer, 1999), 121–134.
  16. [16] D.L. Davis & D.W. Bouldin, A cluster separation measure, IEEE Trans. on Pattern Analysis and Machine Intelligence, 1 (4), 1979, 224–227.
  17. [17] J.C. Bezdek, Some new indexes of cluster validity, IEEE Trans. on Systems, Man, and Cybernetics—Part B: Cybernetics, 28 (3), 1998, 301–315. doi:10.1109/3477.678624
  18. [18] M.-C. Su & C.-H. Chou, A modified version of the K-means algorithm with a distance based on cluster symmetry, IEEE Trans. on Pattern Analysis and Machine Intelligence, 23 (6), 2001, 674–680. doi:10.1109/34.927466

Important Links:

Go Back