SPACE VELOCITY AS AN INSUFFICIENT PARAMETER IN THE STEAM-REFORMING PROCESS

P.A. Erickson, D.D. Davieau, R.J. Kamisky, and Z.J. Zoller

References

  1. [1] J.R. Rostrup-Nielsen, L.J. Christiansen, & J.H. Bak Hansen, Activity of steam reforming catalysts: Role and assessment, Applied Catalysis, 43, 1988, 283–303. doi:10.1016/S0166-9834(00)82733-5
  2. [2] K.E. Cox & K.D. Williamson, Hydrogen, its technology and implications, vol. IV: utilization of hydrogen (Cleveland, OH: CRC Press, 1977).
  3. [3] S.P. Asprey, B.W. Wojciechowski, & B.A. Peppley, Kinetic studies using temperature-scanning: The steam-reforming of methanol, Applied Catalysis A: General, 179, 1999, 51–70. doi:10.1016/S0926-860X(98)00300-7
  4. [4] J.P. Sterchi, The effect of hydrocarbon impurities on the methanol steam-reforming process for fuel cell applications, doctoral dessertation, University of Florida, Gainesville, FL, 2001.
  5. [5] S. Ahmed & M. Krumpelt, Hydrogen from hydrocarbon fuels for fuel cells, International Journal of Hydrogen Energy, 26, 2001, 4. doi:10.1016/S0360-3199(00)00097-5
  6. [6] G.L. Ohl, J.L. Stein, & G.E. Smith, Fundamental factors in the design of a fast-responding methanol-to-hydrogen steam reformer for transportation applications, ASME Transactions, 118, 1996, 112.
  7. [7] P.A. Erickson & V.P. Roan, Enhancing hydrogen production for fuel cell vehicles by superposition of acoustics fields on the reformer: A preliminary study, SAE Technical Paper 2003-01-0806, Detroit, USA, 2003, 1–7.
  8. [8] J.M. Zalc & D.G. Loffler, Fuel processing for PEM fuel cells: Transport and kinetic issues of system design, Journal of Power Sources, 111, 2002, 58–64. doi:10.1016/S0378-7753(02)00269-0
  9. [9] P.J. deWild & M.J.F.M Verhaak, Catalytic production ofhydrogen from methanol, Catalysis Today, 60 (1), 2000, 3–10. doi:10.1016/S0920-5861(00)00311-4
  10. [10] S. Shiizaki, I. Nagashima, & S. Terada, The new concept of plate-fin type methanol reformer for PEFC and the development of catalyst with high heat transfer, Proc. 3rd International Fuel Cell Conference, Nagoya, Japan, Nov. 30–Dec. 3, 1999.
  11. [11] M. Zanfir & A. Gavriilidis, Catalytic combustion assisted methane steam-reforming in a catalytic plate reactor, Chemical Engineering Science, 58, 2003, 3947–3960. doi:10.1016/S0009-2509(03)00279-3
  12. [12] D.G. Loffler, S.D. McDermott, & C.N. Renn, Activity and durability of water-gas shift catalysts used for the steam reforming of Methanol, Journal of Power Sources, 114, 2003, 15–20. doi:10.1016/S0378-7753(02)00589-X
  13. [13] W. Ruettinger, O. Ilinch, & R.J. Farrauto, A new generation of water gas shift catalysts for fuel cell applications, Journal of Power Sources, 118, 2003. doi:10.1016/S0378-7753(03)00062-4
  14. [14] P.A. Erickson, Enhancing the steam-reforming process with acoustics: An investigation for fuel cell vehicle Applications, doctoral dessertation, University of Florida, Gainesville, FL, 2002.
  15. [15] X.R. Zhang, P. Shi, J. Zhao, M. Zhao, et al., Production of hydrogen for fuel cells by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts, Fuel Processing Technology, 83, 2003.
  16. [16] A.V. Sapre, Catalyst deactivation kinetics from variable space-velocity experiments, Chemical Engineering Science, 52 (24), 1997, 4615–4623. doi:10.1016/S0009-2509(97)00303-5
  17. [17] K. Takeda, A. Baba, Y. Hishinuma, & T. Chikahisa, Performance of a methanol reforming system for a fuel cell powered vehicle and system evaluation of an PEFC system, Society of Automotive Engineers of Japan, 23, 2002, 183–188.
  18. [18] N.A. Darwish, N. Hilal, G. Versteeg, & B. Heesink, Feasibility of the direct generation of hydrogen for fuel-cell powered vehicles by on-board steam reformation of naphtha, Fuel, 83, 2004, 409–417. doi:10.1016/j.fuel.2003.10.001

Important Links:

Go Back