Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
AN INFORMATION RETRIEVAL APPROACH TO PREDICTING METEOROLOGICAL DATA
A. Kidron and S.T. Klein
References
[1] T. Koskela, M. Varsta, J. Heikkonen, & K. Kaski, Time seriesprediction using recurrent SOM with local linear models, Int.J. of Knowledge-Based Intelligent Engineering Systems, 2 (1),1998, 60–68.
[2] N.H. Packard, J.P. Crutchfield, J.D. Farmer, & R.S. Shaw,Geometry from a time series, Physical Review Letters, 45 (9),1980, 712–716.
doi:10.1103/PhysRevLett.45.712
[3] F. Takens, Detecting strange attractors in turbulence, inD.A. Rand & L.S. Young (Eds.), Dynamical systems and tur-bulence, Lecture notes in mathematics 898 (Warwick: SpringerVerlag, 1980) 366–381.
[4] J.D. Farmer & J.J. Sidorowich, Predicting chaotic time-series,Physical review letters, 59 (8), 1987, 845.
doi:10.1103/PhysRevLett.59.845
[5] S. Singh, Multiple forecasting using local approximation, Pat-tern recognition, 34 (2), 2001, 443–455.
doi:10.1016/S0031-3203(99)00214-9
[6] N.M. Islam, S.Y. Liong, K.K. Phoon, & C.Y. Liaw, Forecastingof river flow data with general regression neural network,Proc. International Symposium on Integrated Water ResourcesManagement, Davis, CA, USA, 2001, 285–290.
[7] T.H. Cormen, C.E. Leiserson, & R.L. Rivest, Introduction toalgorithms (Location: MIT Press, 1990).
[8] D.Q. Goldin & P.C. Kanellakis, On similarity queries fortime-series data: constraint specification and implementation,Proc. of the First International Conference on Principles andPractice of Constraint Programming, Cassis, France, 1995,137–153.
[9] D.R. Wilson & T. Martinez, Improved heterogeneous distancefunctions, Journal of Artificial Intelligence Research, 6, 1997,1–34.
[10] S.L. Lee, S.J. Chun, D.H. Kim, J.H. Lee, & C.W. Chung,Similarity search for multidimensional data sequences, Proc.16th IEEE Conf. on Data Engineering, Location 2000, 599–608.
[11] C. Faloutsos, M. Ranganathan, & Y. Manolopoulos, Fastsubsequence matching in time-series databases. Proc. of the1994 ACM SIGMOD International Conference on Managementof Data, Location 1994, 419–429.
[12] R. Weber, H.J. Schek, & S. Blott, A quantitative analysisand performance study for similarity-search methods in high-dimensional spaces, Proc. of 24th International Conference onVery Large Data Bases, Location 1998, 194–205.
[13] M.L. Hetland, A survey of recent methods for efficient retrievalof similar time sequences, in M. Last, A. Kandel, and H.Bunke (Eds.), Data mining in time series databases (Singapore:World Scientific, 2004) page #s.
[14] C. Faloutsos, H.V. Jagadish, A.O. Mendelzon, & T.A. Milo,Signature technique for similarity-based queries, Proc. Com-pression and Complexity of Sequences ’97 (SEQUENCES ’97),Italy, 1997, page #s.
[15] K.K. Phoon, M.N. Islam, C.Y. Liaw, & S.Y. Liong, A practicalinverse approach for forecasting nonlinear hydrological timeseries, Journal of Hydrologic Engineering, ASCE, 7 (2), 2002,116–128.
doi:10.1061/(ASCE)1084-0699(2002)7:2(116)
[16] V. Babovic & M. Keijzer, Forecasting of river discharges inthe presence of chaos and noise, in J. Marsalek (Ed.), Copingwith floods: lessons learned from recent experiences, (Location:Kluwer, 1999) page #s.
[17] A.E. Mitchell, A comparison of short-term dispersion esti-mates resulting from various atmospheric stability classificationmethods, Atmospheric Environment, 16 (4), 1982, 765–773.
doi:10.1016/0004-6981(82)90394-8
Important Links:
Abstract
DOI:
10.2316/Journal.205.2007.3.205-4272
From Journal
(205) International Journal of Modelling and Simulation - 2007
Go Back