Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
PERSISTENT BOUNDED DISTURBANCE REJECTION FOR IMPULSIVE SYSTEMS WITH PARAMETRIC UNCERTAINTIES: AN LMI APPROACH
F. Hao, L.Wang, and T. Chu
References
[1] V. Lakshmikantham, D.D. Bainov, & P.S. Simenov, Theoryof impulsive differential systems (Singapore: World Scientific Press, 1989).
[2] T. Yang & L.O. Chua, Impulsive stabilization for control and synchronization of chaotic systems: Theory and application to secure communication, IEEE Transaction on Circuits and Systems I, 44 (10), 1997, 976–988.
doi:10.1109/81.633887
[3] S. Leela, F.A. Mcrae, & S. Sivasundaram, Controllability of impulsive differential equations, Journal of Mathematical Analysis and Applications, 177 (1), 1993, 24–30.
doi:10.1006/jmaa.1993.1240
[4] Z.H. Guan, T.H. Qian, & X. Yu, Controllability and observability of linear time-varying impulsive systems, IEEE Transactions on Circuits and Systems I, 49 (8), 2002, 1198–1208.
doi:10.1109/TCSI.2002.801261
[5] Z.G. Li, C.Y. Wen, & Y.C. Soh, Analysis and design ofimpulsive control systems, IEEE Transaction on Automationand Control, 46 (6), 2001, 894–897.
doi:10.1109/9.928590
[6] M. Vidyasagar, Optimal rejection of persistent bounded disturbances, IEEE Transaction on Automation and Control, 31(6), 1986, 527–535.
doi:10.1109/TAC.1986.1104315
[7] M.A. Dahleh & I.J. Diaz-Bobillo, Control of uncertain systems: A linear programming approach (Englewood Cliffs, NJ: Prentice Hall, 1995).
[8] J. Abedor, K. Nagpal, & K. Poolla, A linear matrix inequality approach to peak-to-peak gain minimization, International Journal on Robust and Nonlinear Control, 9 (6), 1996, 899–927.
doi:10.1002/(SICI)1099-1239(199611)6:9/10<899::AID-RNC259>3.0.CO;2-G
[9] F. Hao, T. Chu, L. Huang, & L. Wang, Persistent bounded disturbance rejection for impulsive systems, IEEE Transaction on Circuits Systems I, 50 (6), 2003, 785–788.
doi:10.1109/TCSI.2003.812628
[10] F. Blanchini, Set invariance in control, Automatica, 35(11), 1999, 1747–1767.
doi:10.1016/S0005-1098(99)00113-2
[11] P.P. Khargonekar, I.R. Petersen, & K. Zhou, Robust stabilization of uncertain systems and H∞ optimal control, IEEE Transaction on Automation and Control, 35 (3), 1990, 351–361.
[12] F. Hao, T. Chu, L. Huang, & L. Wang, Non-fragile controllers of peak gain minimization for uncertain systems via LMI approach, Dynamics of Continuous, Discrete and Impulsive Systems, 10 (5), 2003, 681–693.
[13] K. Zhou, J.C. Doyle, & K. Glover, Robust and optimal control (Upper Saddle River, NJ: Prentice-Hall 1996).
[14] S. Boyd, L. E. Ghaoui, E. Feron, & V. Balakrishnan, Linear matrix inequalities in system and control theory (Philadelphia, PA: SIAM, 1994).
Important Links:
Abstract
DOI:
10.2316/Journal.201.2007.4.201-1783
From Journal
(201) Mechatronic Systems and Control (formerly Control and Intelligent Systems) - 2007
Go Back