FORECASTING ELECTRIC POWER CONSUMPTION USING SUBSPACE ALGORITHMS

M. Mossberg

References

  1. [1] J.Y. Fan & J.D. McDonald, A real-time implementation ofshort-term load forecasting for distribution power systems,IEEE Transactions on Power Systems, 9(2), May 1994, 988–994. doi:10.1109/59.317646
  2. [2] L. Ljung, System identification, Second Edition (Upper Saddle River, NJ: Prentice–Hall, 1999).
  3. [3] A.-U. Asar & J.R. McDonald, A specification of neural network applications in the load forecasting problem. IEEE Transactions on Control Systems Technology, 2 (2), June 1994, 135–141. doi:10.1109/87.294341
  4. [4] T.W.S. Chow & C.T. Leung, Neural network based short-term load forecasting using weather compensation. IEEE Transactions on Power Systems, 11 (4), November 1996, 1736–1742. doi:10.1109/59.544636
  5. [5] O.A. Alsayegh, Short-term load forecasting using seasonal artificial neural networks. Int. Journal of Power and Energy Systems, 23 (3), 2003, 137–142.
  6. [6] K. Ozawa, T. Niimura, & T. Nakashima, Fuzzy time-seriesmodel of electric power consumption, Proc. 1999 IEEE Cana-dian Conf. on Electrical and Computer Eng., Edmonton,Canada, May 9–12, 1999, pp. 1195–1198.
  7. [7] P. Van Overschee & B. De Moor, Subspace identification for linear systems (Dordrecht, The Netherlands: Kluwer Academic Publishers, 1996).
  8. [8] D. Bauer, Subspace algorithms, Proc. 13th IFAC Symp. System Identification, Rotterdam, The Netherlands, August 27–29, 2003, pp. 1030–1041.
  9. [9] G.F. Franklin, J.D. Powell, & A. Emami-Naeini, Feedbackcontrol of dynamic systems, Fourth Edition (Upper SaddleRiver, NJ: Prentice–Hall, 2002).
  10. [10] W.E. Larimore, Canonical variate analysis in identification, filtering and adaptive control, Proc. 29th IEEE Conf. on Decision and Control, Honolulu, HI, December 1990, pp. 596–604.
  11. [11] M. Verhaegen, Identification of the deterministic part of MIMO state space models given in innovations form from input–output data, Automatica, 30 (1), 1994, 61–74. doi:10.1016/0005-1098(94)90229-1
  12. [12] P. Van Overschee & B. De Moor, N4SID: Subspace algorithms for the identification of combined deterministic–stochastic systems, Automatica, 30 (1), 1994, 75–93. doi:10.1016/0005-1098(94)90230-5
  13. [13] G.H. Golub & C.F. Van Loan, Matrix computations, Thirdedition (Baltimore, MD: The John Hopkins University Press,1996).
  14. [14] K. Peternell, W. Scherrer, & M. Deistler. Statistical analysis of novel subspace identification methods, Signal Processing, 52, 1996, 161–177. doi:10.1016/0165-1684(96)00051-5
  15. [15] T. Söderström & P. Stoica, System identification (Hemel Hempstead, UK: Prentice–Hall, 1989).

Important Links:

Go Back