Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
MODELLING AND PREDICTIVE CONTROL OF A MULTIVARIABLE PROCESS USING RECURRENT NEURAL NETWORKS
N. Sivakumaran and T.K. Radhakrishnan
References
[1] R.K. Pearson, Selecting nonlinear model structures for computer control, Journal of Process Control, 13 (1), 2003, 1–26.
doi:10.1016/S0959-1524(02)00022-7
[2] K.H. Johansson & J.L.R. Nunes, A multivariable laboratory process with an adjustable zero, Proc. 17th American Control Conference, Philadelphia, PA, 1998.
[3] K.S. Narendra & K. Parthasarathy, Identification and control of dynamic systems using neural networks, IEEE Transactions on Neural Networks, 1 (1), 1990, 4–27.
doi:10.1109/72.80202
[4] K. Narendra & K. Parthasarathy, Gradient methods for optimization of dynamical systems containing neural networks, IEEE Transactions on Neural Network, 2 (2), 1991, 252–262.
doi:10.1109/72.80336
[5] B.A. Pearlmutter, Dynamic recurrent neural networks, Technical report CMU-CS-90-196, School of Computer science, Carnegie Mellon University, December 1990.
[6] F. Declercq & De Keyser, Comparative study of neural predictors in model based predictive control, IEEE Conf., www.rug.ac.be (accessed March 1996).
[7] P. Gil, J. Henriques, A. Dourado, & H. Duarte-Ramos, Constrained neural model predictive control with guaranteed free offset, Proc. of IEEE Int. Conf. on Industrial Electronics, Control and Implementation – IEECON, Japan, 2000, 1991–1996.
[8] H.T. Su, T.J. McAvoy, & P. Werbos, Long-term predictions of chemical processes using recurrent neural networks: a parallel training approach, Industrial & Engineering Chemistry Research, 31, 1992, 1338–1352.
doi:10.1021/ie00005a014
[9] M. Lazar & O. Pastravanu, A neural predictive controller for nonlinear systems, Department of Automatic Control and Industrial Informatics, Technical University "Gh. Asachi of Iasi, Blvd. Mangeron, Romania.
[10] A.C. Parlos, O.T. Rais, & A.F. Atiya, Multi step-ahead prediction using dynamic recurrent neural networks, Neural Networks, 13, 2000, 765–786.
doi:10.1016/S0893-6080(00)00048-4
[11] J. Henriques, P. Gil, A. Dourado, & H. Duarte-Ramos, Application of a recurrent neural network in on-line modeling of real-time systems, Informatics Engineering Department, UC, P´olo II, 3030 Coimbra, Portugal, http://www.dei.uc.pt (accessed December 2001).
[12] J. Henriques & A. Dourado, A multivariable adaptive control using a recurrent neural network, Proc. Eann98 – Engineering Applications of Neural Networks, Gibraltar, 1998, 118–121.
[13] K.O. Temang, P.D. Schnelle, & T.J. McAvoy, Model predictive control of an industrial packed bed reactor using neural networks, Journal of Process Control, 5 (1), 1995, 9–27.
doi:10.1016/0959-1524(95)95941-6
[14] E.F. Camacho & C. Bordons, Model predictive control (London: Springer, 1999).
[15] R. Williams & D. Zipser, Gradient-based learning algorithms for recurrent networks and their computational complexity, in Y. Chauvin & D. Rumelhart (Eds.), Back propagation: Theory, architectures and applications, Chapter 13 (1995), 433–486.
[16] R. Viknesh, N. Sivakumaran, J.S. Chandra, & T.K. Radhakrishnan, A critical study of decentralized controllers for multivariable system, Chemical Engineering and Technology (Wiley-VCH), 27 (8), 2004, 880–889.
doi:10.1002/ceat.200402034
[17] J.S. Lin, S.S. Jang, S.S. Shieh, & M. Subramaniam, Generalized multivariable dynamic artificial neural network modeling for chemical processes, Industrial & Engineering Chemistry Research, 38, 1999, 4700–4711.
doi:10.1021/ie990312e
Important Links:
Abstract
DOI:
10.2316/Journal.205.2008.1.205-4415
From Journal
(205) International Journal of Modelling and Simulation - 2008
Go Back