PREDICTION OF TORQUE IN MILLING BY RESPONSE SURFACE METHOD AND NEURAL NETWORK

K. Kadirgama∗ and K.A. Abou-El-Hossein∗∗

References

  1. [1] D.C. Montgomery, Design and analysis of experiments, FifthEdition (New York: John Wiley and Sons, 2001).
  2. [2] A.I. Khuri & J.A. Cornell, Response surfaces design andanalyses, Second Edition (New York: Marcel Dekker, Inc,1996).
  3. [3] R. Mead & D.J. Pike, A review of response surface methodologyfrom a biometric viewpoint, Biometrics, 31, 1975, 803–851.
  4. [4] W.J. Hill & W.G. Hunter, A review of response surfacemethodology: A literature survey, Technometrics, 8, 1966,571–590.
  5. [5] M. Alauddin, M.A. El Baradie, & M.S.J. Hashmi, Predictionof tool life in end milling by response surface methodology,Journal of Materials Processing Technology, 71, 1997, 456–465.
  6. [6] G. Boothroyd, Fundamentals of metal machining and machinetools (New York: McGraw Hill, 1975).
  7. [7] M.A. El Baradie, Surface roughness model for grey cast iron(154BHN), Proceeding of Institution of Mechanical Engg, PartB, Journal of Engineering Manufacture, 207, 1993, 43–54.
  8. [8] M. Toosi & M. Zhu, An overview of acoustic emission and neuralnetworks technology and their applications in manufacturingprocess control. Journal of Industrial Technology, 11 (4), 1995,22–27.
  9. [9] Y. Koren, et al., Tool wear and breakage detection using aprocess model, Annals CIRP, 35, 1986, 283–288.
  10. [10] Y.S. Tarng & B.Y. Lee, A sensor for the detection of tool break-age in NC Milling, Journal of Materials Processing Technology,36, 1995, 259–272.
  11. [11] J.H. Lee & S.J. Lee, One step ahead prediction of flank wearusing cutting force, International Journal of Machine Toolsand Manufacture, 39, 1999, 1747–1760.
  12. [12] S.K. Chaudhury, V.K. Jain, & C.V.V. Rama Rao, On-linemonitoring of tool wear in turning using a neural network,International Journal of Machine Tools and Manufacture, 39,1999, 489–504.
  13. [13] D.E. Dimla & P.M. Lister, On-line metal cutting tool condi-tion monitoring. II: Tool state classification using multi-layerperceptron neural network, International Journal of MachineTools and Manufacture, 40, 2000, 769–781.
  14. [14] T. Yu-Hsuan, C. Chen Joseph, & L. Shi-Jer, An in-processsurface recognition system based on neural networks in endmilling cutting operations, International Journal of MachineTools and Manufacture, 39, 1999, 583–605.
  15. [15] D.E. Rumelhart, G.E. Hinton, & R.J. Williams, Learning in-ternal representations by error propagation, in D. E. Rumel-hart & J. L. McClelland (Eds.), Parallel distributed process-ing: Explorations in the microstructure of cognition, Vol. 1(Cambridge, MA: MIT Press, 1986), 319–362.
  16. [16] G. Chryssolouris, M. Domroese, & P. Beaulieu, Sensor synthesisfor control of manufacturing processes, American Society ofMechanical Engineers (ASME), Journal of Engineering forIndustry, 114, 1992, 158–174.
  17. [17] R.P. Lippmann, IEEE ASSP Magazine April, 4, 1987.
  18. [18] J. Leski & E. Czogala, A new fuzzy inference system withmoving consequents in if–then rules. Application to patternrecognition, Bulletin of the Polish Academy of Sciences, 45 (4),1997, 643–655.
  19. [19] J.A. Freeman, Back propagation in a neural network. AI ExpertNeural Network Special Report (Indiana: Addison-Wesley,1992).
  20. [20] I.N. Tansel, B. Ozcelik, W.Y. Bao, P. Chen, D. Rincon, S.Y.Yang, & A. Yenilmez, Selection of optimal cutting conditionsby using GONNS, International Journal of Machine Tools andManufacture, 46(1), 2006, 26–35.
  21. [21] N.R. Draper & H. Smith, Applied regression analysis(New York: Wiley, 1981).
  22. [22] G.E.P. Box & N.R. Draper Empirical model-building andresponse surfaces (New york: John Wiley & Sons, 1987).
  23. [23] G.E.P. Box & D.W. Behnken, Some new three level designsfor the study of quantitative variables, Technometrics, 2, 1960,455–475.

Important Links:

Go Back