NOVEL APPROACH TO SIGNAL MATCHED TWO CHANNEL MULTIRATE FILTER BANK USING NYQUIST FILTER

S.L. Nalbalwar,∗ S.D. Joshi,∗ and R.K. Patney∗

References

  1. [1] M.K. Tsatsanis & G.B. Giannakis, ‘Principal component filterbank for optimal multiresolution analysis,’ IEEE Transactionson Signal Processing, 43 (8), 1995, 1766–1777.
  2. [2] G.W. Wornell, Signal Processing with fractals (Upper SaddleRiver, NJ: Prentice Hall, 1996).
  3. [3] G.W. Wornell, ‘A Karhunen-Loeve like expansion for 1/fprocesses via Wavelets,’ IEEE Transactions on InformationTheory, 36 (4), 1990, 859–861.
  4. [4] A. Gupta, S.D. Joshi, & S. Prasad, ‘A new approach forestimation of statistically matched wavelet,’ IEEE Transactionson Signal Processing, 53 (5), 1778–1792.
  5. [5] P.P. Vaidyanathan, Multirate systems and filter Banks (En-glewood Cliffs, NJ: Prentice Hall, 1993).
  6. [6] P.P. Vaidyanathan, ‘Multirate digital filter banks, polyphasenetworks and applications: A tutorial,’ Proceedings of theIEEE, 78 (1), 1990, 56–93.
  7. [7] P.P. Vaidyanathan & B. Vrcelj, ‘Biorthogonal partner andapplications,’ IEEE Transactions on Signal Processing, 49 (5),2007, 1013–1027.
  8. [8] A. Pandharipande & S. Dasgupta, ‘Biorthogonal nonuniformfilter banks and tree structures,’ IEEE Transactions on Circuitsand Systems, 49 (10), 2002, 1457–1467.
  9. [9] J. Kovacevic & M. Vetterli, ‘PR filter banks with rationalrate changes,’ IEEE Transactions on Signal Processing, 41 (6),1993, 2047–2060.
  10. [10] S. Akkarakaran & P.P. Vaidyanathan, ‘New results and openproblems on nonuniform filter banks,’ Proceedings of the IEEE297International Conference Acoustics, Speech and Signal Pro-cessing, 3, 1999, 1501–1504.

Important Links:

Go Back