A COMPROMISE BETWEEN SIMPLICITY AND ACCURACY OF NONLINEAR REDUCED ORDER SYSTEMS

A. Yousefi∗ and B. Lohmann∗

References

  1. [1] M. Buttelmann & B. Lohmann, Model simplification and orderreduction of nonlinear systems with genetic algorithms, Pro-ceedings of the IMACS Symposium on Mathematical Modelling,3rd MATHMOD, Vienna, 2000, 777–781.
  2. [2] M. Buttelmann & B. Lohmann, Non-linear model reductionby genetic algorithms with using a system structure relatedfitness function, European Control Confer- ence (ECC), Porto,Portugal, 1870–1875, 2001.
  3. [3] M. Buttelmann & B. Lohmann, Two optimization methodsfor solving the problem of structure simplification of nonlinearsystems, 8th IEEE International Conference on Methods andModels in Automation and Robotics, Poland, 2002, 1257–1262.
  4. [4] B. Lohmann, A. Yousefi, & M. Buttelmann. Row by rowstructure simplification, The American Control Conference,Boston, USA, 2004.
  5. [5] A. Yousefi & B. Lohmann, Structure simplification of reducedorder nonlinear systems using efficient fitness functions andsearch spaces, The 10th IFAC Symposium on Large ScaleSystems:Theory and Applications, Osaka, Japan, 2004.
  6. [6] B. Lohmann, Application of model order reduction to a hydrp-neumatic vehicle suspension, IEEE Transactions on ControlSystems Technology, 3(2), March 1995, 102–109.
  7. [7] P.V. Kokotovic, R.E. O’Malley, & P. Sannuti, Singlar pertur-bation and order reduction in control theory –An overview.Automatica, 12, 1976, 123–132.
  8. [8] S. Volkwein, Proper orthogonal decomposition and singularvalue decomposition, Technical Report, Graz University, 1999.
  9. [9] J. Meuleman, L. Hubert, & W. Heiser. Two purposes for matrixfactorizations: A historical appraisal, SIAM Review, 37, 2000,68–82.
  10. [10] G.H. Golub & C.F. Van Loan, Matrix computations (Baltimore,MD: The Johns Hopkins University Press, 1996).
  11. [11] A.J. Newman, Model reduction via the karhunen-loeve expan-sion, part i: An exposition, Technical report, University ofMaryland, 1996.342
  12. [12] A.J. Newman, Model reduction via the karhunen-loeve expan-sion, part ii: Some elementary examples, Technical report,University of Maryland, 1996.
  13. [13] J.M.A. Scherpen, Balancing for nonlinear systems, System &Control Letters, 21, 1993, 143–153.
  14. [14] A. Yousefi, A compromise between simplicity and accuracy ofnonlinear reduced order systems, Technical report, Technicalreports on Automatic Control (TRAC), Technical Universityof Munich, 2006.
  15. [15] B. Kagstrom & A. Ruhe, On angles between subspaces ofa finite dimensional inner product space, Lecture Notes inMathematics 973, 1983, 263–285 .
  16. [16] A. Bjorck & G. Golub, Numerical methods for computing anglesbetween linear subspaces. Math. Comp. 27, 1973, 579-594.
  17. [17] C.L. Lawson & R.J. Hanson, Solving least squares problems(Englewood, Chffs, NJ: Prentice-Hall, 1974).
  18. [18] M. Mitchell, An introduction to genetic algorithms (Cambridge:MIT Press, 1996).
  19. [19] D.T. Pham & D. Karaboga, Inteligent optimization techniques –Genetic algorithms, Tabu search, simulated annealing andneural networks (Springer, 2000).
  20. [20] A. Yousefi, Nonlinear systems toolbox for MATLAB (Universityof Bremen, 2004).
  21. [21] D. Jung & A. Yousefi, A MATLAB-based package or systemmatrices optimization method (Technical University of Munich,2005).
  22. [22] M.A. Albunni & A. Yousefi, Genetic Algorithms toolbox forMATLAB. (University of Bremen, 2003).
  23. [23] B. Lohmann, Ordnungsreduktion und Dominanzanalysenichtlinearer Systeme, volume 8 of VDI-Verlag. VDI-Fortschrittsberichte, Dusseldorf, 1994.

Important Links:

Go Back