SECOND-ORDER CONE OPTIMIZATION APPROACH TO GROUNDWATER QUANTITY MANAGEMENT

J.M. Ndambuki,∗ T. Terlaky,∗∗ C.B.M. Stroet,∗∗∗ and E.J.M. Veling∗∗∗

References

  1. [1] E. Aguado, N. Sitar, & I. Remson, Sensitivity analysis in aquiferstudies, Water Resources Research, 13 (4), 1977, 733–737.
  2. [2] J.D. Bredenhoeft & R.A. Young, Conjunctive use of ground-water and surface water for irrigated agriculture: risk aversion,Water Resources Research, 19 (5), 1983, 1111–1121.
  3. [3] S.M. Gorelick, A model for managing sources of groundwaterpollution, Water Resources Research, 18 (4), 1982, 773–781.
  4. [4] R. Willis & W.-G. Yeh, Groundwater systems planning andmanagement, (USA: Prentice-Hall Inc., 1987).
  5. [5] Y.-K. Tung, Groundwater management by chance constrainedmodel, Journal of Water Resources Planning and Management,112 (1), 1986, 1–19.
  6. [6] J. Mayer, Computational techniques for probabilistic con-strained optimization, in K. Marti, (Ed), Stochastic optimiza-tion, numerical methods and technical applications, Proceed-ings of a GAMM/IFIP-Workshop held at the Federal ArmedForces University Munich, Germany, 1992.
  7. [7] B. Provencher & O. Burt, Approximating the optimal ground-water pumping policy in a multi-aquifer stochastic use setting,Water Resources Research, 30 (3), 1994, 833–843.
  8. [8] M.M. Hantush & M.A. Marino, Two-dimensional stochasticanalysis and optimal estimation in aquifer: random recharge,Water Resources Research, 30 (2), 1994, 559–569.
  9. [9] M.M. Hantush & M.A. Marion, Continuous-time stochasticanalysis of groundwater flow in heterogeneous aquifers, WaterResources Research, 31 (3), 1995, 565–575.
  10. [10] S.M. Gorelick, Large scale nonlinear deterministic and stochas-tic optimization, formulations involving simulation of sub-surface contamination, Mathematical Programming, 48, 1990,19–39.
  11. [11] J.M. Wagner, U. Shamir, & H.R. Nemati, Groundwater qual-ity management under uncertainty: stochastic programmingapproaches and the value of information, Water ResourcesResearch, 28 (5), 1992, 1233–1246.
  12. [12] G.D. Marsily, Quantitative hydrogeology (USA: Academic PressInc., 1986).
  13. [13] L.W. Gelhar, Stochastic subsurface hydrology (USA: Prentice-Hall Inc., 1993).
  14. [14] M. van Leeuwen, C.B.M. Stroet, A.P. Butler, & J.A. Tomp-kins, Stochastic determination of well capture zones, WaterResources Research, 34 (9), 1998, 2215–2223.
  15. [15] J.M. Wagner, U. Shamir, & D.H. Marks, Containing ground-water contamination: planning models using stochastic pro-gramming with resource, European Jour. Oper. Res., 77, 1994,1–26.
  16. [16] B.J. Wagner & S.M. Gorelick, Reliable aquifer remediation inthe presence of spatially variable hydraulic conductivity: fromdata to design, Water Resources Research, 1989, 2211–2225.
  17. [17] J.F. Sykes, B.E. Sleep, & N.R. Thimson, A moment methodfor calculating groundwater flow uncertainty: the analysisof a landfill, in G. Jousma, J. Bear, Y.Y. Haimes, & F.Walter, (Eds.), Groundwater contamination:use of models indecision-making, Proceedings of the International Conferenceon Groundwater Contamination, Amsterdam, Netherlands,1989, 219–227.
  18. [18] R. Andricevic, A real-time approach to management and mon-itoring of groundwater hydraulics, Water Resources Research,26 (11), 1990, 2747–2755.
  19. [19] R. Andricevic & P.K. Kitanidis, Optimization of pumpingschedule in aquifer remediation under uncertainty, Water Re-sources Research, 26 (5) 1990, 975–885.
  20. [20] J.R. Kaunas &Y.Y. Haimes, Risk management of groundwatercontamination in multi-objective framework, Water ResourcesResearch, 21 (11), 1985, 1721–1730.
  21. [21] K.W. Hipel, Stochastic and statistical methods, in hydrology andenvironmental engineering, 2 (Netherlands: Kluwer AcademicPublishers, 1994).
  22. [22] J.M. Ndambuki, F.A. Otieno, C.B. Stroet, & E.J.M. Vel-ing, Groundwater management under uncertainty: a multi-objective approach, Water SA, 26 (1), 2000, 35–42.
  23. [23] J.F. Sturm, SeDuMi: a matlab toolbox for solving optimizationproblems over symmetric cones, systems optimization, Maas-tricht University, 1.03 edition, http://sedumi.mcmaster.ca,1999.
  24. [24] M.S. Lobo, L. Vandenberghe, S. Boyd, & H. Lebret, Applica-tions of second-order cone programming, Linear Algebra andits Applications, 284, 1998, 193–228.
  25. [25] E.D. Andersen & K.D. Anderson, Exploiting parallel hardwareto solve optimization problems, SAIM News, 32 (4), 1999.
  26. [26] S. Boyd, L. Vandenberghe, & M. Grant, Efficient convex opti-mization for engineering design, in Proceedings IFAC Sympo-sium on robust control design, Rio de-Janeiro, Brazil, 1994.
  27. [27] A. Ben-Tal & A. Nemirovski, Convex optimization in engi-neering (Istrael: Tecnion Israel Institute of Technology, 1998).
  28. [28] R.J. Vanderbei & H. Yurtan, Using LOQO to solve second-order cone programming problems, Technical Report SOR-98-9, Statistics and Operations Research, Princeton University,1998.

Important Links:

Go Back