MATCHING OBSERVED ALPHA HELIX LENGTHS TO PREDICTED SECONDARY STRUCTURE

Brian D. Cloteaux and Nadezhda Serova

View Full Paper

References

  1. [1] B. Cloteaux & N. Serova, Matching observed alpha helix lengths to predicted secondary structure, BIBMW 2009. IEEE International Conference on Bioinformatics and Biomedicine Workshop, Washington, DC, USA, 2009, 113–119.
  2. [2] Y. Wu, M. Chen, M. Lu, Q. Wang, & J. Ma, Determining protein topology from skeletons of secondary structures, Journal of Molecular Biology, 350(3), 2005, 571–586.
  3. [3] W. Sun, S. Al-Haj, & J. He, Parallel computing in protein structure topology determination, Proceedings of the 26th Army Science Conference, Orlando, Florida, USA, 2008, cp8.
  4. [4] Y. Lu, J. He, & C.E.M. Strauss, Deriving topology and sequence alignment for the helix skeleton in lowresolution protein density maps, Journal of Bioinformatics and Computational Biology, 6(1), 2008, 183–201.
  5. [5] J. He, Y. Lu, & E. Pontelli, A parallel algorithm for helix mapping between 3d and 1d protein structure using the length constraints, ISPA ’04: Proceedings of Second International Symposium on Parallel and Distributed Processing and Applications, Hong Kong, China, 2004, 746–756.
  6. [6] M.R. Garey & D.S. Johnson, Computers and intractability: A guide to the theory of NP-completeness (New York, NY, USA: W. H. Freeman & Co., 1990).
  7. [7] B. Rost & C. Sander, Prediction of protein secondary structure at better than 70% accuracy, Journal of Molecular Biology, 232(2), 1993, 584–599.
  8. [8] B. Rost, G. Yachdav, & J. Liu, The PredictProtein server, Nucleic Acids Research, 32, 2004, W321–W326.
  9. [9] P. Diaconis, Group representations in probability and statistics, Lecture notes – Monograph series, vol. 11 (Hayward, California, USA: Institute of Mathematical Statistics, 1988).
  10. [10] R. Fagin, R. Kumar, & D. Sivakumar, Comparing top k lists, SIAM Journal on Discrete Mathematics, 17(1), 2003, 134–160.
  11. [11] N. Lesh & M. Mitzenmacher, Bubblesearch: A simple heuristic for improving priority-based greedy algorithms, Information Processing Letters, 97(4), 2006, 161–169.
  12. [12] A. Borodin, M.N. Nielsen, & C. Rackoff, (Incremental) priority algorithms, Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, California: Society for Industrial and Applied Mathematics, 2002, 752–761.

Important Links:

Go Back