STABILIZATION OF A CLASS OF EVEN ORDER LINEAR TIME-INVARIANT SYSTEMS

Vanita Jain and Bhaurao K. Lande

References

  1. [1] V.L. Syrmos, C.T. Abdallah, P. Dorato, & K. Grigoriadias,Static output feedback: A survey, Automatica, 33(2), 1997,125–137.
  2. [2] P.T. Kabamba, Control of linear system using generalizedsampled-data hold functions, IEEE Transactions on AutomaticControl, 32(9), 1987, 772–783.
  3. [3] L. Moreau & D. Aeyels, Stabilization by means of periodicoutput feedback, Proc. 37th IEEE Conf. on Decision andControl, Phoenix, Arizona, USA, 1999, 108–109.
  4. [4] L. Moreau & D. Aeyels, A note on periodic output feedbackfor third-order systems, Proc 14th International Symposiumof Mathematical theory of Networks and Systems, Perpignan,France, 2000.
  5. [5] G.A. Leonov, The Brockett problem for linear discrete controlsystems, Automation Remote Control, 63(5), 2002, 777–781.
  6. [6] G.A. Leonov, Brockett’s problem in the theory of stabilityof linear differential equations, St. Petersburg MathematicalJournal, 13(4), 2002, 613–628.
  7. [7] R. Brockett, A stabilization problem, in V.D. Blondel, E.D.Sontag, M. Vidyasgar, & J.C.Willems (Eds.), Open problemsin mathematical systems and control theory, communicationand control engineering (New York: Springer-Verlag, 1999),75–78.
  8. [8] J.C. Allwright, A. Astolfi, & H.P. Wong, A note on asymptoticstabilization of linear systems by periodic, piecewise constant,output feedback, Automatica, 41(2), 2005, 339–344.
  9. [9] R. Bellman, J. Bentsman, & S.M. Meerkov, Stability of fastperiodic systems, IEEE Transactions on Automatic Control,30(3), 1985, 289–291.
  10. [10] W.J. Rugh, Linear system theory (New Jersey: Prentice Hall,Information and System Sciences, 1966).
  11. [11] G. Swisher, Introduction to linear system analysis (Champaign:Matrix Publication Inc., 1976).
  12. [12] N.N. Bogoliubov & Y.A. Mitropolsky, Asymptotic methods inthe theory of nonlinear oscillations (New York: Gordon andBreach, 1961).58
  13. [13] J.A. Sanders & F. Verhulst, Averaging methods in nonlin-ear dynamical systems, Volume 59 of Applied MathematicalSciences (New york: Springer-Verlag, 1985).
  14. [14] M. Farkas, Periodic motions, Volume 104 Applied Mathemat-ical of Sciences (Berlin, New York: Springer-Verlag, 1994).

Important Links:

Go Back