FINITE ELEMENT METHOD FOR CAPTURING HYDRAULIC JUMP IN OPEN CHANNEL

Ali Triki and Ezzeddine Hadj-Taïeb

References

  1. [1] A. Triki & E. Hadj-Taieb, Numerical solution for one dimen-sional open channel transient flow, International Journal ofModelling and Simulation, 30(2), 2010, 211–217.
  2. [2] J.S. Wang, Finite difference TVD scheme for computation ofdam-break flows, ASCE Journal of Hydraulic Engineering, 4,2000, 253–258.
  3. [3] N. Katopodes & T. Strelkoff, A dissipative Galerkin scheme foropen channel flow, Journal of Hydraulic Engineering, 110(4),1984, 450–466.
  4. [4] J.M. Hervouet, Hydrodynamique des ´ecoulements `a surfacelibre mod´elisation num´erique avec la m´ethode des ´el´ementsfinis (Presse de l’´ecole nationale des ponts et chauss´ees, 2003).
  5. [5] E.F. Toro, Shock capturing methods for free surface shallowflows (John Wiley and Sons, 2000).
  6. [6] V.L. Streeter & E.B. Wylie, Hydraulic transients (Ann Arbor:F.E.B. Press, 1983).
  7. [7] Y. Zhixing & K. Yusaku, A discontinuous Galerkin finite ele-ment shallow water model in simulating tidal flows, Proceed-ings of the 15th International Offshore and Polar EngineeringConference, Seoul Korea, 2005, 1526–1531.
  8. [8] J. Chunbo, C. Yang, & D. Liang, Computation of shallowwakes with the fractional step finite element method, Journalof Hydraulic Research, 47(1), 2009, 127–136.
  9. [9] T. Strelkoff, One dimensional equations of open channel flow,ASCE Journal of Hydraulic Division 96(1), 1969, 861–876.
  10. [10] C. Zienkiewicz & R.L. Taylor, The finite element method,Fourth Edition (UK: McGraw-Hill, 1988).
  11. [11] G. Dhatt & G. Touzot, Une pr´esentation de la m´ethode des´el´ements finis (Paris: Edition Maloine SA, 1984).
  12. [12] R.D. Richtmeyer & K.W. Morton, Difference methods forinitial value problems (New York: John Wiley and Sons, 1967).
  13. [13] R.S.M. Mizanur Rashid & M.H. Chaudhry, Flood routing inchannels with flood plains, Journal of Hydrology, 171, 1995,75–91.83

Important Links:

Go Back