Li-Feng Liu, Yan-Yun Qu, Cui-Hua Li, and Yuan Xie
[1] L. Hagen & A.B. Kahng, New spectral methods for ratio cutpartitioning and clustering, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 11 (9), 1992,1074–1085. [2] U. Von Luxburg, A tutorial on spectral clustering, Statisticsand Computing, 17 (4), 2007, 395–416. [3] M. Filippone, F. Camastra, F. Masulli, & S. Rovetta, Asurvey of kernel and spectral methods for clustering, PatternRecognition, 2008, 41 (1), 176–190. [4] J. Malik, S. Belongie, T. Leung, & J. Shi, Contour andtexture analysis for image segmentation, International Journalof Computer Vision, 43 (1), 2001, 7–27. [5] J.M. Odobez, D. Gatica-Perez, & M. Guillemot, Video shotclustering using spectral methods, Proc. of 3rd InternationalWorkshop on Content-Based Multimedia Indexing (CBMI),Rennes, France, 2003, 94–102. [6] F.R. Bach & M.I. Jordan, Blind one-microphone speech sep-aration: A spectral learning approach, Advances in NeuralInformation Processing Systems (NIPS), Vancouver, Canada,17, 2005, 65–72. [7] L. Shi, P.A. Heng, & T.-T. Wong, A spectral clustering ap-proach to fMRI activation detection, 27th Annual InternationalConference of the Engineering in Medicine and Biology Society(IEEE-EMBS 2005), Shanghai, China, 2006, 5892–5895. [8] A. Paccanaro, J.A. Casbon, & M.A.S. Saqi, Spectral clusteringof protein sequences, Nucleic Acids Research, 34 (5), 2006,1571. [9] A.Y. Ng, M.I. Jordan, & Y. Weiss, On spectral clustering:analysis and an algorithm, in T.G. Dietterich, S. Becker, &Z. Ghahramani (Eds.), Advances in Neural Information Pro-cessing Systems (Cambridge, MA: MIT Press, 2002), 14,849–856. [10] J. Shi & J. Malik, Normalized cuts and image segmenta-tion, IEEE Transactions on Pattern Analysis and MachineIntelligence, 22 (8), 2000, 888–905. [11] E.R. Barnes, An algorithm for partitioning the nodes of a graph,20th IEEE Conference on Decision and Control Including theSymposium on Adaptive Processes, San Francisco, California,20, 1981, 303–304. [12] C.J. Alpert & A.B. Kahng, Multiway partitioning via geomet-ric embeddings, orderings and dynamic programming, IEEETransactions on Computer-Aided Design of Integrated Circuitsand Systems, 14 (11), 1995, 1342–1358. [13] P.K. Chan, M.D.F. Schlag, & J.Y. Zien, Spectral k-wayratio-cut partitioning and clustering, IEEE Transactions onComputer-Aided Design of Integrated Circuits and Systems,13 (9), 1994, 1088–1096. [14] U. Maulik & S. Bandyopadhyay, Genetic algorithm-basedclustering technique, Pattern Recognition, 33 (9), 2000, 1455–1465. [15] J. Kennedy & R. Eberhart, Particle swarm optimization, Proc.of the IEEE Int. Conf. on Neural Networks, Piscataway, NJ,1995, 1942–1948. [16] C.Y. Chen & F. Ye, Particle swarm optimization algorithmand its application to clustering analysis, Proceedings of IEEEInternational Conference on Networking, Sensing and Control,Taipei, Taiwan, 2004, 789–794. [17] X. Cui, T.E. Potok, & P. Palathingal, Document clusteringusing particle swarm optimization, Proceedings of the 2005IEEE Swarm Intelligence Symposium (SIS 2005 ), 2005,185–191. [18] R. Kannan & A. Vetta, On clusterings: Good, bad and spectral,Journal of the ACM (JACM), 51 (3), 2004, 497–515. [19] M. Meila & J.B. Shi, A random walks view of spectral seg-mentation, in T. Jaakkola & T. Richardson (Eds.), ArtificialIntelligence and Statistics AIS-TATS, Key West, Florida, 2001. [20] M. Meila & J. Shi, Learning segmentation by random walks,Advances in Neural Information Processing Systems,Vancouver, British Columbia, Canada, 2001, 873–879. [21] C. Blake & C. Merz, UCI repository of machine learn-ing databases (California, Irwine: School of Informationand Computer Science, University of California, 1998),http://www.ics.uci.edu/_mlearn/MLRepository.html.
Important Links:
Go Back