STOCHASTIC SIMULATION OF ENERGY EXTRACTION WITH AN OPTICALLY CONTROLLED NANO-ELECTROMECHANICAL ENGINE

Farbod Khoshnoud, Houman Owhadi, and Clarence W. de Silva

References

  1. [1] H. Linke, Coherent power booster, Science, 5608, 2003, 841–842.
  2. [2] R.D. Astumian & P. H¨anggi, Brownian motors, Physics Today,55, 2002, 33–39.
  3. [3] R.D. Astumian, Symmetry relations for trajectories of a Brow-nian motor, Physical Review E, 76, 2007, 020102.
  4. [4] R.D. Astumian, Generalized fluctuation-dissipation and recip-rocal relations for Brownian sieves and molecular machines,Physical Review E, 79, 2009, 021119.
  5. [5] P. H¨anggi & F. Marchesoni, Artificial Brownian Motors: Con-trolling transport on the nanoscale, Reviews of Modern Physics,81, 2009, 387–442.
  6. [6] M.O. Scully, Extracting work from a single thermal bath viaquantum negentropy, Physical Review Letters, 26, 87 (22),2001, 220601.
  7. [7] M.O. Scully, M.S. Zubairy, G.S. Agarwal, & H. Walther,Extracting work from a single heat bath via vanishing quantumcoherence, Science, 5608, 2003, 862–864.
  8. [8] G.E. Crooks, Entropy production fluctuation theorem andthe nonequilibrium work relation for free energy differences,Physical Review E, 60(3), 1999, 2721–2726.
  9. [9] R.L. Forward, Extracting electrical energy from the vacuumby cohesion of charged foliated conductors, Physical ReviewB, 30, 1984, 1700–1702.
  10. [10] F. Pinto, Engine cycle of an optically controlled vacuum energytransducer, Physical Review B, 60, 1999, 14,740–14,755.
  11. [11] K.A. Milton, The Casimir effect: Physical manifestations ofzero-point energy, World Scientific Publishing Co Pte Ltd,Singapore, 2001.
  12. [12] H.B. Chan, V.A. Aksyuk, R.N. Kleiman, D.J. Bishop, &F. Capasso, Nonlinear micromechanical Casimir oscillator,Physical Review Letters, 87, 2001, 211801.
  13. [13] A. Lambrecht, The Casimir effect: A force from nothing,http://physicsworld.com/cws/article/print/9747, 2002.
  14. [14] S.K. Lamoreaux, The Casimir force: Background, experiments,and applications, Reports on Progress in Physics, 68, 2005,201–236.
  15. [15] E.M. Lifshitz, The theory of molecular attractive forces betweensolids, Soviet Physics JETP, 29, 1955, 94–110.
  16. [16] T.S. Moss, G.J. Burrell, & B. Ellis, Semiconductor optoelec-tronics (New York: Wiley, 1973).
  17. [17] P.K. Basu, The theory of optical processes in semiconductors(Oxford: Clarendon, 1997).
  18. [18] M. Auslender & S. Hava, Handbook of optical constants ofsolids, III (San Diego, CA: Academic Press, 1998), 155–186.
  19. [19] W. Arnold, S. Hunklinger, & K. Dransfeld, Influence of opticalabsorption on the Van der Waals interaction between solids,Physical Review B, 19, 1979, 6049–6056.
  20. [20] A. Ambroziak, Semiconductor photoelectric devices (New York:Gordon and Breach, 1969).
  21. [21] H.Y. Fan, Infra-red absorption in semiconductors, Reports onProgress in Physics, 19, 1956, 107–155.
  22. [22] E. Bartan, Determination of effective mass values by aKramers–Kronig analysis for variously doped silicon crystals,Infrared Physics, 17, 1977, 111–119.
  23. [23] N. Bou-Rabee & H. Owhadi, Stochastic variational integrators,IMA Journal of Numerical Analysis, arXiv:0708.2187, 2008.141
  24. [24] N. Bou-Rabee & H. Owhadi, Long-run behavior of vari-ational integrators in the stochastic context, SINUM,arXiv:0712.4123v5, 2010.
  25. [25] F. Khoshnoud, H. Owhadi, & C.W. de Silva, Stochasticsimulation of a Casimir oscillator, Proc. ASME 2010 Int.Mechanical Engineering Congress & Exposition, Vancouver,British Columbia, November 12–18, 2010.

Important Links:

Go Back